
SOLUTION OF SPECIALIZED SYLVESTER EQUATION

Ondra Kamenik

Given the following matrix equation

AX +BX

(
i
⊗C

)
= D,

where A is regular n × n matrix, X is n ×mi matrix of unknowns, B is singular
n× n matrix, C is m×m regular matrix with |β(C)| < 1 (i.e. modulus of largest
eigenvalue is less than one), i is an order of Kronecker product, and finally D is
n×mi matrix.

First we multiply the equation from the left by A−1 to obtain:

X +A−1BX

(
i
⊗C

)
= A−1D

Then we find real Schur decomposition K = UA−1BUT , and F = V CV T . The
equation can be written as

UX

(
i
⊗V T

)
+KUX

(
i
⊗V T

)(
i
⊗F

)
= UA−1D

(
i
⊗V T

)
This can be rewritten as

Y +KY

(
i
⊗F

)
= D̂,

and vectorized (
I +

i
⊗FT ⊗K

)
vec(Y ) = vec(D̂)

Let iF denote
i
⊗FT for the rest of the text.

Lemma 1. For any n× n matrix A and β1β2 > 0, if there is exactly one solution
of (

I2 ⊗ In +

(
α β1

−β2 α

)
⊗A

)(
x1

x2

)
=

(
d1

d2

)
,

then it can be obtained as solution of(
In + 2αA+ (α2 + β2)A2

)
x1 = d̂1(

In + 2αA+ (α2 + β2)A2
)
x2 = d̂2
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where β =
√
β1β2, and(

d̂1

d̂2

)
=

(
I2 ⊗ In +

(
α −β1

β2 α

)
⊗A

)(
d1

d2

)

Proof. Since(
α β1

−β2 α

)(
α −β1

β2 α

)
=

(
α −β1

β2 α

)(
α β1

−β2 α

)
=

(
α2 + β2 0

0 α2 + β2

)
,

it is easy to see that if the equation is multiplied by

I2 ⊗ In +

(
α −β1

β2 α

)
⊗A

we obtain the result. We only need to prove that the matrix is regular. But this is
clear because matrix (

α −β1

β2 α

)
collapses an eigenvalue of A to −1 iff the matrix(

α β1

−β2 α

)
does. �

Lemma 2. For any n× n matrix A and δ1δ2 > 0, if there is exactly one solution
of(
I2 ⊗ In + 2α

(
γ δ1
−δ2 γ

)
⊗A+ (α2 + β2)

(
γ δ1
−δ2 γ

)2

⊗A2

)(
x1

x2

)
=

(
d1

d2

)
it can be obtained as(

In + 2a1A+ (a2
1 + b21)A2

) (
In + 2a2A+ (a2

2 + b22)A2
)
x1 = d̂1(

In + 2a1A+ (a2
1 + b21)A2

) (
In + 2a2A+ (a2

2 + b22)A2
)
x2 = d̂2

where(
d̂1

d̂2

)
=

(
I2 ⊗ In + 2α

(
γ −δ1
δ2 γ

)
⊗A+ (α2 + β2)

(
γ −δ1
δ2 γ

)2

⊗A2

)(
d1

d2

)
and

a1 = αγ − βδ
b1 = αδ + γβ

a2 = αγ + βδ

b2 = αδ − γβ

δ =
√
δ1δ2
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Proof. The matrix can be written as(
I2 ⊗ In + (α+ iβ)

(
γ δ1
−δ2 γ

)
⊗A

)(
I2 ⊗ In + (α− iβ)

(
γ δ1
−δ2 γ

)
⊗A

)
.

Note that the both matrices are regular since their product is regular. For the same
reason as in the previous proof, the following matrix is also regular(

I2 ⊗ In + (α+ iβ)

(
γ −δ1
δ2 γ

)
⊗A

)(
I2 ⊗ In + (α− iβ)

(
γ −δ1
δ2 γ

)
⊗A

)
,

and we may multiply the equation by this matrix obtaining d̂1 and d̂2. Note that
the four matrices commute, that is why we can write the whole product as(
I2 ⊗ In + (α+ iβ)

(
γ δ1
−δ2 γ

)
⊗A

)
·
(
I2 ⊗ In + (α+ iβ)

(
γ −δ1
δ2 γ

)
⊗A

)
·(

I2 ⊗ In + (α− iβ)

(
γ δ1
−δ2 γ

)
⊗A

)
·
(
I2 ⊗ In + (α− iβ)

(
γ −δ1
δ2 γ

)
⊗A

)
=(

I2 ⊗ In + 2(α+ iβ)

(
γ 0
0 γ

)
⊗A+ (α+ iβ)2

(
γ2 + δ2 0

0 γ2 + δ2

)
⊗A2

)
·(

I2 ⊗ In + 2(α− iβ)

(
γ 0
0 γ

)
⊗A+ (α− iβ)2

(
γ2 + δ2 0

0 γ2 + δ2

)
⊗A2

)
The product is a diagonal consiting of two n× n blocks, which are the same. The
block can be rewritten as product:

(In + (α+ iβ)(γ + iδ)A) · (In + (α+ iβ)(γ − iδ)A)·
(In + (α− iβ)(γ + iδ)A) · (In + (α− iβ)(γ − iδ)A)

and after reordering

(In + (α+ iβ)(γ + iδ)A) · (In + (α− iβ)(γ − iδ)A)·
(In + (α+ iβ)(γ − iδ)A) · (In + (α− iβ)(γ + iδ)A) =

(In + 2(αγ − βδ)A+ (α2 + β2)(γ2 + δ2)A2)·
(In + 2(αγ + βδ)A+ (α2 + β2)(γ2 + δ2)A2)

Now it suffices to compare a1 = αγ − βδ and verify that

b21 = (α2 + β2)(γ2 + δ2)− a2
1 =

= α2γ2 + β2γ2 + α2β2 + β2δ2 − (αγ)2 + 2αβγδ − (βδ)2 =

= (βγ)2 + (αβ)2 + 2αβγδ =

= (βγ + αβ)2

For b2 it is done in the same way. �
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The Algorithm

Below we define three functions of which vec(Y ) = solv1(1, vec(D̂), i) provides

the solution Y . X is then obtained as X = UTY

(
i
⊗V

)
.

Synopsis.
FT is m ×m lower quasi-triangular matrix. Let mr be a number of real eigen-

values, mc number of complex pairs. Thus m = mr + 2mc. Let Fj denote j-th
diagonal block of FT (1× 1 or 2× 2 matrix) for j = 1, . . . ,mr +mc. For a fixed j,
let j̄ denote index of the first column of Fj in FT . Whenever we write something
like (Imi ⊗ In + r iF ⊗ K)x = d, x and d denote column vectors of appropriate
dimensions, and xj̄ is j̄-th partition of x, and xj = (xj̄ xj̄+1)T if j-th eigenvalue
is complex, and xj = xj̄ if j-th eigenvalue is real.

Function solv1.
The function x = solv1(r, d, i) solves equation(

Imi ⊗ In + r iF ⊗K
)
x = d.

The function proceedes as follows:
If i = 0, the equation is solved directly, K is upper quasi-triangular matrix, so

this is easy.
If i > 0, then we go through diagonal blocks Fj for j = 1, . . . ,mr + mc and

perform:

(1) if Fj = (fj̄j̄) = (f), then we return xj = solv1(rf, dj̄ , i − 1). Then pre-
calculate y = dj − xj , and eliminate guys below Fj . This is, for each
k = j̄ + 1, . . . ,m, we put

dk = dk − rfj̄k
(
i−1F ⊗K

)
xj̄ = dk −

fj̄k
f
y

(2) if Fj =

(
α β1

−β2 α

)
, we return xj = solv2(rα, rβ1, rβ2, dj , i−1). Then we

precalculate

y =

((
α −β1

β2 α

)
⊗ Imi−1 ⊗ In

)(
dj̄ − xj̄

dj̄+1 − xj̄+1

)
and eliminate guys below Fj . This is, for each k = j̄ + 2, . . . , n we put

dk = dk − r(fj̄k fj̄+1k)⊗
(
i−1F ⊗K

)
xj

= dk −
1

α2 + β1β2

(
(fj̄k fj̄+1k)⊗ Imi−1 ⊗ In

)
y

Function solv2.
The function x = solv2(α, β1, β2, d, i) solves equation(

I2 ⊗ Imi ⊗ In +

(
α β1

−β2 α

)
⊗ iF ⊗K

)
x = d

According to Lemma 1 the function returns

x =

(
solv2p(α, β1β2, d̂1, i)

solv2p(α, β1β2, d̂2, i)

)
,

where d̂1, and d̂2 are partitions of d̂ from the lemma.
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Function solv2p.
The function x = solv2p(α, β2, d, i) solves equation(

Imi ⊗ In + 2α iF ⊗K + (α2 + β2) iF 2 ⊗K2
)
x = d

The function proceedes as follows:
If i = 0, the matrix In + 2αK + (α2 + β2)K2 is calculated and the solution is

obtained directly.
Now note that diagonal blocks of F 2T are of the form F 2

j , since if the FT is block
partitioned according to diagonal blocks, then it is lower triangular.

If i > 0, then we go through diagonal blocks Fj for j = 1, . . . ,mr + mc and
perform:

(1) if Fj = (fj̄j̄) = (f) then j-th diagonal block of

Imi ⊗ In + 2α iF ⊗K + (α2 + β2) iF 2 ⊗K2

takes the form

Imi−1 ⊗ In + 2αf i−1F ⊗K + (α2 + β2)f2 i−1F 2 ⊗K2

and we can put xj = solv2p(fα, f2β2, dj , i− 1).
Then we need to eliminate guys below Fj . Note that |f2| < |f |, therefore

we precalculate y2 = (α2 + β2)f2( i−1F 2 ⊗K2)xj , and then precalculate

y1 = 2αf( i−1F ⊗K)xj = dj − xj − y2.

Let gpq denote element of F 2T at position (q, p). The elimination is done
by going through k = j̄ + 1, . . . ,m and putting

dk = dk −
(
2αfj̄k

i−1F ⊗K + (α2 + β2)gj̄k
i−1F 2 ⊗K2

)
xj

= dk −
fj̄k
f
y1 −

gj̄k
f2

y2

(2) if Fj =

(
γ δ1
−δ2 γ

)
, then j-th diagonal block of

Imi ⊗ In + 2α iF ⊗K + (α2 + β2) iF 2 ⊗K2

takes the form

Imi−1 ⊗ In + 2α

(
γ δ1
−δ2 γ

)
i−1F ⊗K + (α2 + β2)

(
γ δ1
−δ2 γ

)2
i−1F 2 ⊗K2

According to Lemma 2, we need to calculate d̂j̄ , and d̂j̄+1, and a1, b1, a2,
b2. Then we obtain

xj̄ = solv2p(a1, b
2
1, solv2p(a2, b

2
2, d̂j̄ , i− 1), i− 1)

xj̄+1 = solv2p(a1, b
2
1, solv2p(a2, b

2
2, d̂j̄+1, i− 1), i− 1)
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Now we need to eliminate guys below Fj . Since ‖F 2
j ‖ < ‖Fj‖, we precal-

culate

y2 = (α2 + β2)(γ2 + δ2)
(
I2 ⊗ i−1F 2 ⊗K2

)
xj

y1 = 2α(γ2 + δ2)
(
I2 ⊗ i−1F ⊗K

)
xj

= (γ2 + δ2)
(
F−1
j ⊗ Imi−1n

)(
dj − xj −

1

(γ2 + δ2)

(
F 2
j ⊗ Imi−1n

)
y2

)
=

((
γ −δ1
δ2 γ

)
⊗ Imi−1n

)
(dj − xj)−

((
γ δ1
−δ2 γ

)
⊗ Imi−1n

)
y2

Then we go through all k = j̄+2, . . . ,m. For clearer formulas, let fk denote
pair of FT elements in k-th line below Fj , this is fk = (fj̄k fj̄+1k). And

let gk denote the same for F 2T , this is gk = (gj̄k gj̄+1k). For each k we
put

dk = dk −
(
2αfk ⊗ i−1F ⊗K + (α2 + β2)gk ⊗ i−1F 2 ⊗K2

)
xj

= dk −
1

γ2 + δ2
(fk ⊗ Imi−1n) y1 −

1

γ2 + δ2
(gk ⊗ Imi−1n) y2

Final Notes

Numerical Issues of A−1B.
We began the solution of the Sylvester equation with multiplication by A−1. This

can introduce numerical errors, and we need more numerically stable supplement.
Its aim is to make A and B commutative, this is we need to find a regular matrix
P , such that (PA)(PB) = (PB)(PA). Recall that this is neccessary in solution of

(I2 ⊗ Imi ⊗ (PA) + (D + C)⊗ iF ⊗ (PB))x = d,

since this equation is multiplied by I2⊗ Imi ⊗ (PA) + (D−C)⊗ iF ⊗PB, and the
diagonal result

I2 ⊗ Imi ⊗ (PAPA) + 2D ⊗ iF ⊗ (PAPB) + (D2 − C2)⊗ iF 2 ⊗ (PBPB)

is obtained only if (PA)(PB) = (PB)(PA).
Finding regular solution of (PA)(PB) = (PB)(PA) is equivalent to finding

regular solution of APB − BPA = 0. Numerical error of the former equation is
P -times greater than the numerical error of the latter equation. And the numerical
error of the latter equation also grows with the size of P . On the other hand,
truncation error in P multiplication decreases with growing the size of P . By
intuition, stability analysis will show that the best choice is some orthonormal P .

Obviously, since A is regular, the equation APB −BPA = 0 has solution of the
form P = αA−1, where α 6= 0. There is a vector space of all solutions P (including
singular ones). In precise arithmetics, its dimension is

∑
n2
i , where ni is number of

repetitions of i-th eigenvalue of A−1B which is similar to BA−1. In floating point
arithmetics, without any further knowledge about A, and B, we are only sure about
dimension n which is implied by similarity of A−1B and BA−1. Now we try to find
the base of the vector space of solutions.
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Let L denote the following linear operator:

L(X) = (AXB −BXA)T .

Let vec(X) denote a vector made by stacking all the columns of X. Let Tn
denote n2 × n2 matrix representing operator vec(X) 7→ vec(XT ). And finally let
M denote n2 × n2 matrix represening the operator L. It is not difficult to verify
that:

M = Tn(BT ⊗A−AT ⊗B)

Now we show that M is skew symmetric. Recall that Tn(X ⊗ Y ) = (Y ⊗X)Tn, we
have:

MT = (BT⊗A−AT⊗B)TTn = (B⊗AT−A⊗BT )Tn = Tn(AT⊗B−BT⊗A) = −M

We try to solve M vec(X) = Tn(0) = 0. Since M is skew symmetric, there is real

orthonormal matrix Q, such that M = QM̂QT , and M̂ is block diagonal matrix
consisting of 2× 2 blocks of the form(

0 αi

−αi 0

)
,

and of additional zero, if n2 is odd.

Now we solve equation M̂y = 0, where y = QT vec(X). Now there are n zero

rows in M̂ coming from similarity of A−1B and BA−1 (structural zeros). Note that
the additional zero for odd n2 is already included in that number, since for odd n2 is
n2−n even. Besides those, there are also zeros (esp. in floating point arithmetics),
coming from repetitive (or close) eigenvalues of A−1B. If we are able to select the
rows with the structural zeros, a solution is obtained by picking arbitrary numbers
for the same positions in y, and put vec(X) = Qy.

The following questions need to be answered:

(1) How to recognize the structural rows?
(2) Is A−1 generated by a y, which has non-zero elements only on structural

rows? Note that A can have repetitive eigenvalues. The positive answer
to the question implies that in each n-partition of y there is exactly one
structural row.

(3) And very difficult one: How to pick y so that X would be regular, or even
close to orthonormal (pure orthonormality overdeterminates y)?

Making Zeros in F .
It is clear that the numerical complexity of the proposed algorithm strongly

depends on a number of non-zero elements in the Schur factor F . If we were able to
find P , such that PFP−1 has substantially less zeros than F , then the computation
would be substantially faster. However, it seems that we have to pay price for
any additional zero in terms of less numerical stability of PFP−1 multiplication.
Consider P , and F in form

P =

(
I X
0 I

)
, F =

(
A C
0 B

)
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we obtain

PFP−1 =

(
A C +XB −AX
0 B

)
Thus, we need to solve C = AX − XB. Its clear that numerical stability of

operator Y 7→ PY P−1 and its inverse Y 7→ P−1Y P is worse with growing norm
‖X‖. The norm can be as large as ‖F‖/δ, where δ is a distance of eigenspectra of
A and B. Also, a numerical error of the solution is proportional to ‖C‖/δ.

Although, these difficulties cannot be overcome completely, we may introduce
an algorithm, which works on F with ordered eigenvalues on diagonal, and seeks
such partitioning to maximize δ and minimize C. If the partitioning is found, the
algorithm finds P and then is run for A and B blocks. It stops when further
partitioning is not possible without breaking some user given limit for numerical
errors. We have to keep in mind that the numerical errors are accumulated in
product of all P ’s of every step.

Exploiting constant rows in F .
If some of F ’s rows consists of the same numbers, or a number of distict values

within a row is small, then this structure can be easily exploited in the algorithm.
Recall, that in both functions solv1, and solv2p, we eliminate guys below diagonal
element (or block) (of FT ), by multiplying solution of the diagonal and cancelling it
from right side. If the elements below the diagonal block are the same, we save one
vector multiplication. Note that in solv2p we still need to multiply by elements
below diagonal of the matrix FT2, which obviously has not the property. However,
the heaviest elimination is done at the very top level, in the first call to solv1.

Another way of exploitation the property is to proceed all calculations in complex
numbers. In that case, only solv1 is run.

How the structure can be introduced into the matrix? Following the same nota-
tion as in previous section, we solve C = AX−XB in order to obtain zeros at place
of C. If it is not possible, we may relax the equation by solving C−R = AX−XB,
where R is suitable matrix with constant rows. The matrix R minimizes ‖C − R‖
in order to minimize ‖X‖ if A, and B are given. Now, in the next step we need to
introduce zeros (or constant rows) to matrix A, so we seek for regular matrix P ,
doing the job. If found, the product looks like:(

P 0
0 I

)(
A R
0 B

)(
P−1 0

0 I

)
=

(
PAP−1 PR

0 B

)
Now note, that matrix PR has also constant rows. Thus, preconditioning of the
matrix in upper left corner doesn’t affect the property. However, a preconditioning
of the matrix in lower right corner breaks the property, since we would obtain
RP−1.


