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Abstract

Dynare incorporates routines for Bayesian VAR models estimation, using a flavor of the
so-called “Minnesota priors.” These routines can be used alone or in parallel with a DSGE
estimation. This document describes their implementation and usage.

If you are impatient to try the software and wish to skip mathematical details, jump to
section 5.

1 Model setting

Consider the following VAR(p) model:

y′t = y′t−1β1 + y′t−2β2 + . . .+ y′t−pβp + x′tα+ ut

where:

� t = 1 . . . T is the time index

� yt is a column vector of ny endogenous variables

� xt a column vector of nx exogenous variables

� the residuals ut ∼ N (0,Σu) are i.i.d. (with Σ a ny × ny matrix)

� β1, β2, . . . , βp are ny × ny matrices

� α is a nx× ny matrix

In the actual implementation, exogenous variables xt are either empty (nx = 0), or only
include a constant (so that nx = 1 and x′t = (1, . . . , 1)). This alternative is controlled by options
constant (the default) and noconstant (see section 5.1.1).

The matrix form of the model is:

Y = XΦ + U

where:
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� Y and U are T × ny

� X is T × k where k = ny · p+ nx

� Φ is k × ny

In other words:

Y =

 y1
...
yT

 X =

 y0 . . . y1−p x1
...

. . .
...

...
yT−1 . . . yT−p xT

 Φ =


β1
...
βp
α


2 Constructing the prior

We need a prior distribution over the parameters (Φ,Σ) before moving to Bayesian estimation.
This section describes the construction of the prior used in Dynare implementation.

The prior is made of three components, which are described in the following subsections.

2.1 Diffuse prior

The first component of the prior is, by default, Jeffreys’ improper prior:

p1(Φ,Σ) ∝ |Σ|−(ny+1)/2

However, it is possible to choose a flat prior by specifying option bvar prior flat. In, that
case:

p1(Φ,Σ) = const

2.2 Dummy observations prior

The second component of the prior is constructed from the likelihood of T ∗ dummy observations
(Y ∗, X∗):

p2(Φ,Σ) ∝ |Σ|−T ∗/2 exp

{
−1

2
Tr(Σ−1(Y ∗ −X∗Φ)′(Y ∗ −X∗Φ))

}
The dummy observations are constructed according to Sims’ version of the Minnesota prior.1

Before constructing the dummy observations, one needs to choose values for the following
parameters:

� τ : the overall tightness of the prior. Large values imply a small prior covariance matrix.
Controlled by option bvar prior tau, with a default of 3

� d: the decay factor for scaling down the coefficients of lagged values. Controlled by option
bvar prior decay, with a default of 0.5

� ω controls the tightness for the prior on Σ. Must be an integer. Controlled by option
bvar prior omega, with a default of 1

� λ and µ: additional tuning parameters, respectively controlled by option bvar prior lambda

(with a default of 5) and option bvar prior mu (with a default of 2)

1See Doan, Litterman and Sims (1984).
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� based on a short presample Y 0 (in Dynare implementation, this presample consists of the
p observations used to initialize the VAR, plus one extra observation at the beginning of
the sample2), one also calculates σ = std(Y 0) and ȳ = mean(Y 0)

Below is a description of the different dummy observations. For the sake of simplicity, we
should assume that ny = 2, nx = 1 and p = 3. The generalization is straigthforward.

� Dummies for the coefficients on the first lag:[
τσ1 0
0 τσ2

]
=

[
τσ1 0 0 0 0 0 0
0 τσ2 0 0 0 0 0

]
Φ + U

� Dummies for the coefficients on the second lag:[
0 0
0 0

]
=

[
0 0 τσ12

d 0 0 0 0
0 0 0 τσ22

d 0 0 0

]
Φ + U

� Dummies for the coefficients on the third lag:[
0 0
0 0

]
=

[
0 0 0 0 τσ13

d 0 0
0 0 0 0 0 τσ23

d 0

]
Φ + U

� The prior for the covariance matrix is implemented by:[
σ1 0
0 σ2

]
=

[
0 0 0 0 0 0 0
0 0 0 0 0 0 0

]
Φ + U

These observations are replicated ω times.

� Co-persistence prior dummy observation, reflecting the belief that when data on all y’s
are stable at their initial levels, they will tend to persist at that level:

[
λȳ1 λȳ2

]
=
[
λȳ1 λȳ2 λȳ1 λȳ2 λȳ1 λȳ2 λ

]
Φ + U

Note: in the implementation, if λ < 0, the exogenous variables will not be included in the
dummy. In that case, the dummy observation becomes:[

−λȳ1 −λȳ2
]

=
[
−λȳ1 −λȳ2 −λȳ1 −λȳ2 −λȳ1 −λȳ2 0

]
Φ + U

� Own-persistence prior dummy observations, reflecting the belief that when yi has been
stable at its initial level, it will tend to persist at that level, regardless of the value of
other variables:[

µȳ1 0
0 µȳ2

]
=

[
µȳ1 0 µȳ1 0 µȳ1 0 0
0 µȳ2 0 µȳ2 0 µȳ2 0

]
Φ + U

This makes a total of T ∗ = ny ·p+ny ·ω+1+ny = ny · (p+ω+1)+1 dummy observations.

2In Dynare 4.2.1 and older versions, only p observations where used. As a consequence the case p = 1 was
buggy, since the standard error of a one observation sample is undefined.
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2.3 Training sample prior

The third component of the prior is constructed from the likelihood of T− observations (Y −, X−)
extracted from the beginning of the sample:

p3(Φ,Σ) ∝ |Σ|−T−/2 exp

{
−1

2
Tr(Σ−1(Y − −X−Φ)′(Y − −X−Φ))

}
In other words, the complete sample is divided in two parts such that T = T− + T+,

Y =

[
Y −

Y +

]
and X =

[
X−

X+

]
.

The size of the training sample T− is controlled by option bvar prior train. It is null by
default.

3 Characterization of the prior and posterior distributions

Notation: in the following, we will use a small “p” as superscript for notations related to the
prior, and a capital “P” for notations related to the posterior.

3.1 Prior distribution

We define the following notations:

� T p = T ∗ + T−

� Y p =

[
Y ∗

Y −

]

� Xp =

[
X∗

X−

]
� dfp = T p − k if p1 is Jeffrey’s prior, or dfp = T p − k − ny − 1 if p1 is a constant

With these notations, one can see that the prior is:

p(Φ,Σ) = p1(Φ,Σ) · p2(Φ,Σ) · p3(Φ,Σ)

∝ |Σ|−(df
p+ny+1+k)/2 exp

{
−1

2
Tr(Σ−1(Y p −XpΦ)′(Y p −XpΦ))

}
We define the following notations:

� Φ̂p = (Xp′Xp)−1Xp′Y p the linear regression of Xp on Y p

� Sp = (Y p −XpΦ̂p)′(Y p −XpΦ̂p)

After some manipulations, one obtains:

p(Φ,Σ) ∝ |Σ|−(df
p+ny+1+k)/2 exp

{
−1

2
Tr(Σ−1(Sp + (Φ− Φ̂p)′Xp′Xp(Φ− Φ̂p)))

}
∝ |Σ|−(df

p+ny+1)/2 exp

{
−1

2
Tr(Σ−1Sp)

}
×

|Σ|−k/2 exp

{
−1

2
Tr(Σ−1(Φ− Φ̂p)′Xp′Xp(Φ− Φ̂p)))

}
From the above decomposition, one can see that the prior distribution is such that:
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� Σ is distributed according to an inverse-Wishart distribution, with dfp degrees of freedom
and parameter Sp

� conditionally to Σ, matrix Φ is distributed according to a matrix-normal distribution,
with mean Φ̂p and variance-covariance parameters Σ and (Xp′Xp)−1

Remark concerning the degrees of freedom of the inverse-Wishart: the inverse-Wishart dis-
tribution requires the number of degrees of freedom to be greater or equal than the number of
variables, i.e. dfp ≥ ny. When the bvar prior flat option is not specified, we have:

dfp = T p − k = ny · (p+ ω + 1) + 1 + T− − ny · p− nx = ny · (ω + 1) + T−

so that the condition is always fulfilled. When bvar prior flat option is specified, we have:

dfp = ny · w + T− − 1

so that with the defaults (ω = 1 and T− = 0) the condition is not met. The user needs to
increase either bvar prior omega or bvar prior train.

3.2 Posterior distribution

Using Bayes formula, the posterior density is given by:

p(Φ,Σ|Y +, X+) =
p(Y +|Φ,Σ, X+) · p(Φ,Σ)

p(Y +|X+)
(1)

The posterior kernel is:

p(Φ,Σ|Y +, X+) ∝ p(Y +|Φ,Σ, X+) · p(Φ,Σ)

Since the likelihood is given by:

p(Y +|Φ,Σ, X+) = (2π)−
T+·ny

2 |Σ|
T+

2 exp

{
−1

2
Tr(Σ−1(Y + −X+Φ)′(Y + −X+Φ))

}
We obtain the following posterior kernel, when combining with the prior:

p(Φ,Σ|Y +, X+) ∝ |Σ|−(df
P+ny+1+k)/2 exp

{
−1

2
Tr(Σ−1(Y P −XPΦ)′(Y P −XPΦ))

}
where:

� TP = T+ + T p = T+ + T− + T ∗

� Y P =

[
Y p

Y +

]
=

 Y ∗

Y −

Y +



� XP =

[
Xp

X+

]
=

 X∗

X−

X+


� dfP = dfp + T+. If p1 is Jeffrey’s prior, then dfP = TP − k. If p1 is a constant, dfP =
TP − k − ny − 1.
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Using the same manipulations than for the prior, the posterior density can be rewritten as:

p(Φ,Σ|Y +, X+) ∝ |Σ|−(df
P+ny+1)/2 exp

{
−1

2
Tr(Σ−1SP )

}
×

|Σ|−k/2 exp

{
−1

2
Tr(Σ−1(Φ− Φ̂P )′XP ′XP (Φ− Φ̂P )))

}
where:

� Φ̂P = (XP ′XP )−1XP ′Y P the linear regression of XP on Y P

� SP = (Y P −XP Φ̂P )′(Y P −XP Φ̂P )

From the above decomposition, one can see that the posterior distribution is such that:

� Σ is distributed according to an inverse-Wishart distribution, with dfP degrees of freedom
and parameter SP

� conditionally to Σ, matrix Φ is distributed according to a matrix-normal distribution,

with mean Φ̂P and variance-covariance parameters Σ and (XP ′XP )−1

Remark concerning the degrees of freedom of the inverse-Wishart: in theory, the condition
over the degrees of freedom of the inverse-Wishart may not be satisfied. In practice, it is not a
problem, since T+ is great.

4 Marginal density

By integrating equation (1) over (Φ,Σ), one gets:

p(Y +|X+) =

∫
p(Y +|Φ,Σ, X+) · p(Φ,Σ)dΦdΣ

We define the following notation for the unnormalized density of a matrix-normal-inverse-
Wishart:

f(Φ,Σ|df, S, Φ̂,Ω) = |Σ|−(df+ny+1)/2 exp

{
−1

2
Tr(Σ−1S)

}
×

|Σ|−k/2 exp

{
−1

2
Tr(Σ−1(Φ− Φ̂)′Ω−1(Φ− Φ̂)))

}
We also note:

F (df, S, Φ̂,Ω) =

∫
f(Φ,Σ|df, S, Φ̂,Ω)dΦdΣ

The function F has an analytical form, which is given by the normalization constants of
matrix-normal and inverse-Wishart densities:3

F (df, S, Φ̂,Ω) = (2π)
ny·k
2 |Ω|

ny
2 · 2

ny·df
2 π

ny(ny−1)
4 |S|−

df
2

ny∏
i=1

Γ

(
df + 1− i

2

)
The prior density is:

p(Φ,Σ) = cp · f(Φ,Σ|dfp, Sp, Φ̂p, (Xp′Xp)−1)

3Function matricint of file bvar density.m implements the calculation of the log of F .
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where the normalization constant is cp = F (dfp, Sp, Φ̂p, (Xp′Xp)−1).
Combining with the likelihood, one can see that the density is:

p(Y +|X+) =

∫
(2π)−

T+·ny
2 f(Φ,Σ|dfP , SP , Φ̂P , (XP ′XP )−1)dΦdΣ

F (dfp, Sp, Φ̂p, (Xp′Xp)−1)

=
(2π)−

T+·ny
2 F (dfP , SP , Φ̂P , (XP ′XP )−1)

F (dfp, Sp, Φ̂p, (Xp′Xp)−1)

5 Dynare commands

Dynare incorporates three commands related to BVAR models à la Sims:

� bvar density for computing marginal density,

� bvar forecast for forecasting (and RMSE computation),

� bvar irf for computing Impulse Response Functions.

5.1 Common options

The two commands share a set of common options, which can be divided in two groups. They
are described in the following subsections.

An important remark concerning options: in Dynare, all options are global. This means that,
if you have set an option in a given command, Dynare will remember this setting for subsequent
commands (unless you change it again). For example, if you call bvar density with option
bvar prior tau = 2, then all subsequent bvar density and bvar forecast commands will
assume a value of 2 for bvar prior tau, unless you redeclare it. This remark also applies to
datafile and similar options, which means that you can run a BVAR estimation after a Dynare
estimation without having to respecify the datafile.

5.1.1 Options related to model and prior specifications

The options related to the prior are:

� bvar prior tau (default: 3)

� bvar prior decay (default: 0.5)

� bvar prior lambda (default: 5)

� bvar prior mu (default: 2)

� bvar prior omega (default: 1)

� bvar prior flat (not enabled by default)

� bvar prior train (default: 0)

Please refer to section 2 for the discussion of their meaning.
Remark: when option bvar prior flat is specified, the condition over the degrees of free-

dom of the inverse-Wishart distribution is not necessarily verified (see section 3.1). One needs
to increase either bvar prior omega or bvar prior train in that case.

It is also possible to use either option constant or noconstant, to specify whether a constant
term should be included in the BVAR model. The default is to include one.
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5.1.2 Options related to the estimated dataset

The list of (endogenous) variables of the BVAR model has to be declared through a varobs

statement (see Dynare reference manual).
The options related to the estimated dataset are the same than for the estimation command

(please refer to the Dynare reference manual for more details):

� datafile

� first obs

� presample

� nobs

� prefilter

� xls sheet

� xls range

Note that option prefilter implies option noconstant.
Please also note that if option loglinear had been specified in a previous estimation

statement, without option logdata, then the BVAR model will be estimated on the log of the
provided dataset, for maintaining coherence with the DSGE estimation procedure.

Restrictions related to the initialization of lags: in DSGE estimation routines, the likelihood
(and therefore the marginal density) are evaluated starting from the observation numbered
first obs + presample in the datafile.4 The BVAR estimation routines use the same con-
vention (i.e. the first observation of Y + will be first obs + presample). Since we need p
observations to initialize the lags, and since we may also use a training sample, the user must
ensure that the following condition holds (estimation will fail otherwise):

first obs + presample > bvar prior train + number of lags

5.2 Marginal density

The syntax for computing the marginal density is:

bvar density(options list) max number of lags;

The options are those described above.
The command will actually compute the marginal density for several models: first for the

model with one lag, then with two lags, and so on up to max number of lags lags. Results will
be stored in a max number of lags by 1 vector oo .bvar.log marginal data density. The
command will also store the prior and posterior information into max number of lags by 1 cell
arrays oo .bvar.prior and oo .bvar.posterior.

5.3 Forecasting

The syntax for computing (out-of-sample) forecasts is:

bvar forecast(options list) max number of lags;

The options are those describe above, plus a few ones:

4first obs points to the first observation to be used in the datafile (defaults to 1), and presample indicates
how many observations after first obs will be used to initialize the Kalman filter (defaults to 0).
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� forecast: the number of periods over which to compute forecasts after the end of the
sample (no default)

� bvar replic: the number of replications for Monte-Carlo simulations (default: 2000)

� conf sig: confidence interval for graphs (default: 0.9)

The forecast option is mandatory.
The command will draw bvar replic random samples from the posterior distribution. For

each draw, it will simulate one path without shocks, and one path with shocks.
The command will produce one graph per observed variable. Each graph displays:

� a blue line for the posterior median forecast,

� two green lines giving the confidence interval for the forecasts without shocks,

� two red lines giving the confidence interval for the forecasts with shocks.

Morever, if option nobs is specified, the command will also compute root mean squared
error (RMSE) for all variables between end of sample and end of datafile.

Most results are stored for future use:

� mean, median, variance and confidence intervals for forecasts (with shocks) are stored in
oo .bvar.forecast.with shocks (in time series form),

� idem for forecasts without shocks in oo .bvar.forecast.no shock,

� all simulated samples are stored in variables sims no shock and sims with shocks in
file mod file/bvar forecast/simulations.mat. Those variables are 3-dimensional ar-
rays: first dimension is time, second dimension is variable (in the order of the varobs

declaration), third dimension indexes the sample number,

� if RMSE has been computed, results are in oo .bvar.forecast.rmse.

5.4 Impulse Response Functions

The syntax for computing impulse response functions is:

bvar irf(number of lags,identification scheme);

The identification scheme option has two potential values

� ’Cholesky’: uses a lower triangular factorization of the covariance matrix (default),

� ’SquareRoot’: uses the Matrix square root of the covariance matrix (sqrtm matlab’s
routine).

Keep in mind that the first factorization of the covariance matrix is sensible to the ordering
of the variables (as declared in the mod file with var). This is not the case of the second
factorization, but its structural interpretation is, at best, unclear (the Matrix square root of a
covariance matrix, Σ, is the unique symmetric matrix A such that Σ = AA).

If you want to change the length of the IRFs plotted by the command, you can put

options .irf=40;
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before the bvar irf-command. Similarly, to change the coverage of the highest posterior
density intervals to e.g. 60% you can put the command

options .bvar.conf sig=0.6;

there.

The mean, median, variance, and confidence intervals for IRFs are saved in oo .bvar.irf

6 Examples

This section presents two short examples of BVAR estimations. These examples and the as-
sociated datafile (bvar sample.m) can be found in the tests/bvar a la sims directory of the
Dynare v4 subversion tree.

6.1 Standalone BVAR estimation

Here is a simple mod file example for a standalone BVAR estimation:

var dx dy;

varobs dx dy;

bvar_density(datafile = bvar_sample, first_obs = 20, bvar_prior_flat,

bvar_prior_train = 10) 8;

bvar_forecast(forecast = 10, bvar_replic = 10000, nobs = 200) 8;

bvar_irf(8,’Cholesky’);

Note that you must declare twice the variables used in the estimation: first with a var

statement, then with a varobs statement. This is necessary to have a syntactically correct mod
file.

The first component of the prior is flat. The prior also incorporates a training sample. Note
that the bvar prior * options also apply to the second command since all options are global.

The bvar density command will compute marginal density for all models from 1 up to 8
lags.

The bvar forecast command will compute forecasts for a BVAR model with 8 lags, for
10 periods in the future, and with 10000 replications. Since nobs is specified and is such that
first obs + nobs - 1 is strictly less than the number of observations in the datafile, the
command will also compute RMSE.

6.2 In parallel with a DSGE estimation

Here follows an example mod file, which performs both a DSGE and a BVAR estimation:

var dx dy;

varexo e_x e_y;

parameters rho_x rho_y;
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rho_x = 0.5;

rho_y = -0.3;

model;

dx = rho_x*dx(-1)+e_x;

dy = rho_y*dy(-1)+e_y;

end;

estimated_params;

rho_x,NORMAL_PDF,0.5,0.1;

rho_y,NORMAL_PDF,-0.3,0.1;

stderr e_x,INV_GAMMA_PDF,0.01,inf;

stderr e_y,INV_GAMMA_PDF,0.01,inf;

end;

varobs dx dy;

check;

estimation(datafile = bvar_sample, mh_replic = 1200, mh_jscale = 1.3,

first_obs = 20);

bvar_density(bvar_prior_train = 10) 8;

bvar_forecast(forecast = 10, bvar_replic = 2000, nobs = 200) 8;

Note that the BVAR commands take their datafile and first obs options from the
estimation command.
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