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Why Dynare?

▶ Dynare (mainly) deals with structural models that rest on theory

▶ Microeconomic foundations ⇒ nonlinear models

▶ Intertemporal optimization ⇒ expectations matter ⇒ Perfect
foresight or Rational expectations

▶ (Stochastic) Shocks push the economy away from equilibrium and
endogenous dynamics bring it back towards equilibrium

▶ Solving nonlinear (stochastic) forward-looking model
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Dynare

▶ A matlab/octave toolbox with algorithms handling DSGE models

▶ A modeling language to represent models and computing tasks

▶ A clear separation between:

▶ The model declared by the user → the preprocessor

▶ The computing functions → a collection of matlab routines.
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Dynare can...

▶ Compute the steady state of a model

▶ Solve a perfect foresight model

▶ Solve local approximations of stochastic models

▶ Estimate a model (full or limited information)

▶ Check for identification of the parameters

▶ Compute optimal policy

▶ Perform global sensitivity analysis

...
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A simple model

1

ct
= βEt

[
αeat+1kα−1

t+1 + 1− δ

ct+1

]
(1)

kt+1 = eatkα
t + (1− δ)kt − ct (2)

at = φat−1 + ϵt (3)

▶ {ϵt}
iid∼ N (0, σ2

ϵ )

▶ Et [Xt+1] is the expectation conditional on the information available
at time t.

▶ At time t all the realisations of the variables (from time ∞ to t) are
known, the model is known.
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Log linearization

▶ Suppose that we have the following recurrent equation:

xt = f (xt−1)

with the steady state x⋆ such that x⋆ = f (x⋆) ̸= 0.

▶ Define x̃t such that xt = x⋆e x̃t , the percentage deviation from the
steady state. We have:

x⋆e x̃t = f
(
x⋆e x̃t−1

)
▶ A first order Taylor approximation of both sides around x̃t = 0 gives:

x⋆ + x⋆x̃t ≈ f (x⋆) + x⋆f ′(x⋆)x̃t−1

⇔ x̃t ≈ f ′(x⋆)x̃t−1
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Linearized simple model

▶ TFP is already log-linearized

▶ We can show that the first order approximations of the Euler
equation and physical capital law of motion are:

Et

[
c̃t − c̃t+1 +

ρ+ δ

1 + ρ

(
at+1 − (1− α)k̃t+1

)]
= 0 (4)

k̃t+1 =
y⋆

k⋆
at + β−1k̃t −

c⋆

k⋆
c̃t (5)
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▶ The deterministic steady state must satisfy the follwing system of equations:


a⋆ = φa⋆

1 = β
(
α k⋆ α−1 + 1 − δ

)
y⋆ = k⋆ α

c⋆ = y⋆ − δk⋆

for which we easily obtain a closed form solution:



a⋆ = 0

k⋆ =
(

α
ρ+δ

) 1
1−α

y⋆ = k⋆ α

c⋆ = y⋆ − δk⋆

with β−1 = 1 + ρ.

▶ Log-linearization of the ressource constraint. We can rewrite (2) equivalently as:

k⋆e
k̃t+1 = eat k⋆ek̃t + (1 − δ)k⋆ek̃t − c⋆ec̃t

With a first order Taylor approximation (around k̃ = c̃ = a = 0) on both sides (omitting the cross products since we are looking
for a first order approximation):

k⋆ + k⋆ k̃t+1 ≈ k⋆ α + at k⋆ α + α k⋆ α−1 k̃t + (1 − δ)
(
k⋆ + k⋆ k̃t

)
− c⋆ − c⋆ c̃t

Removing k⋆ = (1 − δ)k⋆ + k⋆ α − c⋆ on both sides:

k⋆ k̃t+1 ≈ at k⋆ α + α k⋆ α−1 k̃t + (1 − δ)k⋆ k̃t − c⋆ c̃t

Dividing by k⋆ on both sides and exploiting steady state restrictions (definition of y⋆ and Euler equation at the steady state),
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we finally obtain:

k̃t+1 ≈
y⋆

k⋆
at + β

−1 k̃t −
c⋆

k⋆
c̃t

▶ Log-linearization of the Euler equation. We can rewrite (1) equivalently as:

1 = βEt

[
e
c̃t−c̃t+1

(
αeat

(
k⋆ek̃t

)α−1
+ 1 − δ

)]

With a first order Taylor expansion under the conditional expectation:

1 ≈ β
(
α k⋆ α−1 + 1 − δ

)
+ β

(
α k⋆ α−1 + 1 − δ

) (
c̃t − c̃t+1

)
+ βα k⋆ α−1

(
at+1 − (1 − α)k̃t+1

)

Since the steady state satisfies β
(
α k⋆ α−1 + 1 − δ

)
= 1 and α k⋆ α−1 = ρ + δ, we have:

0 ≈ c̃t − c̃t+1 +
ρ + δ

1 + ρ

(
at+1 − (1 − α)k̃t+1

)
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Exact solution of the linearized simple model, I

▶ A solution is an invariant mapping between the controls and the
states

▶ If ct = ψ(kt , at) is known, one can build time series for all the
endogenous variables by iterating over (2)-(3)

▶ Since the model is (log) linearized, we postulate a linear solution:

c̃t = ηck k̃t + ηcaat

k̃t+1 = ηkk k̃t + ηkaat
(6)

▶ A unique (stable) solution exists iff there exists a unique vector
(ηck , ηca, ηkk , ηka) such that (6) is consistent with (4), (5) and (3)
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Exact solution of the linearized simple model, II

▶ Substituting (6) in (4), (5) and (3), one can show that the reduced
form parameters must satisfy:

ηck = k⋆

c⋆

(
β−1 − ηkk

)
ηca = y⋆

c⋆
− k⋆

c⋆
ηka

0 = k⋆

c⋆

(
β−1 − ηkk

)
(1− ηkk )− (1− α) ρ+δ

1+ρ
ηkk

0 =
(

y⋆

c⋆
− k⋆

c⋆
ηka

)
(1− φ)− k⋆

c⋆

(
β−1 − ηkk

)
ηka +

ρ+δ
1+ρ

(φ− (1− α)ηka)

▶ The third equation, for ηkk is quadratic

▶ If we can identify a unique stable solution for ηkk , we can deduce
ηca, ηca and ηck
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Exact solution of the linearized simple model, III

▶ ηkk must solve:
η2kk − ξηkk + β−1 = 0

where:

ξ = 1 + β−1 +
c⋆

k⋆
(1− α)

ρ+ δ

1 + ρ
> 1 + β−1

▶ The equation admits two real roots one unstable (greater than 1)
one stable (between 0 and 1)

▶ The stable solution is:

ηkk =
ξ

2
−

√(
ξ

2

)2

− β−1

▶ When solving (linearized) RE model we always have to deal with a
quadratic equations and to rule out unstable solutions
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Exact solution of the linearized simple model, IV

▶ The endogenous variables are ARMA processes

▶ For instance, the output is characterized by:
ỹt = at + αk̃t

k̃t = ηkk k̃t−1 + ηkaat−1

at = φat−1 + ϵt

⇒ ỹt = (ηkk + φ)ỹt−1 − ηkkφỹt−2 + ϵt − (ηkk − αηka)ϵt−1

an ARMA(2,1) stochastic process with two real roots in the
autoregressive part (ηkk and φ).
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Dynare code for the simple model, I

1 var c k y a ;
2

3 varexo e ;
4

5 parameters beta a lpha d e l t a ph i ;
6

7 beta = 0 . 9 8 ;
8 a lpha = 0 . 3 3 ;
9 d e l t a = 0 . 0 2 ;

10 ph i = 0 . 9 8 ;
11

12 model ;
13

14 1/ c = beta ∗ ( ( a l pha ∗ exp ( a (1 ) ) ∗k ˆ( a lpha −1)+1−d e l t a ) /c (1 ) ) ;
15

16 y = exp ( a ) ∗k(−1)ˆ a lpha ;
17

18 k = (1− d e l t a ) ∗k(−1) + y − c ;
19

20 a = ph i ∗a(−1) + e ;
21

22 end ;
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Dynare code for the simple model, II

1 s t eady s ta t e mode l ;
2

3 rho = 1/ beta −1;
4

5 a = 0 ;
6

7 k = ( a lpha /( rho+d e l t a ) ) ˆ(1/(1− a lpha ) ) ;
8

9 y = kˆ a lpha ;
10

11 c = y − d e l t a ∗k ;
12

13 end ;
14

15 s teady ;

STEADY-STATE RESULTS:

c 2.35379

k 22.9753

y 2.8133

a 0
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Dynare code for the simple model, III

1 s t o c h s imu l ( o r d e r =1, i r f =200) a c k y ;

MODEL SUMMARY

Number of variables: 4

Number of stochastic shocks: 1

Number of state variables: 2

Number of jumpers: 2

Number of static variables: 1

MATRIX OF COVARIANCE OF EXOGENOUS SHOCKS

Variables e

e 0.000100
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Dynare code for the simple model, IV

POLICY AND TRANSITION FUNCTIONS

a c k y

Constant 0 2.353795 22.975287 2.813300

k(-1) 0 0.062248 0.958160 0.040408

a(-1) 0.980000 1.054477 1.702557 2.757034

e 1.000000 1.075997 1.737304 2.813300

THEORETICAL MOMENTS

VARIABLE MEAN STD. DEV. VARIANCE

a 0.0000 0.0503 0.0025

c 2.3538 0.1543 0.0238

k 22.9753 1.7196 2.9569

y 2.8133 0.2021 0.0408

MATRIX OF CORRELATIONS

Variables a c k y

a 1.0000 0.9160 0.8323 0.9800

c 0.9160 1.0000 0.9848 0.9775

k 0.8323 0.9848 1.0000 0.9259

y 0.9800 0.9775 0.9259 1.0000

COEFFICIENTS OF AUTOCORRELATION

Order 1 2 3 4 5

a 0.9800 0.9604 0.9412 0.9224 0.9039

c 0.9974 0.9942 0.9903 0.9858 0.9808

k 0.9996 0.9983 0.9963 0.9936 0.9902

y 0.9902 0.9802 0.9700 0.9597 0.9491

Total computing time : 0h00m01s
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Dynare code for the simple model, V

50 100 150 200
0

0.002

0.004

0.006

0.008

0.01
a

50 100 150 200
0

0.005

0.01

0.015

0.02
c

50 100 150 200
0

0.05

0.1

0.15

0.2

0.25
k

50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

0.03
y
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Remarks

▶ By default (with order=1) Dynare performs a linearization

▶ Use option loglinear to log-linearize the model

▶ If some variables are zero at the steady state:

▶ Use the reparameterization explained above

▶ Add reporting variables in the model:

logX = 100*log(X/STEADY_STATE(X));
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General problem

▶ Let y be a n × 1 vector of endogenous variables, u is a q × 1 vector
of innovations (exogenous variables in dynare language)

▶ We consider the following type of model:

Et [f (yt+1, yt , yt−1, ut)] = 0

with:

ut = σϵt

E[ϵt ] = 0

E[ϵtϵ′t ] = Σϵ

where σ is a scale parameter, ϵ is a vector of auxiliary random
variables

▶ Assumption f : R3n+q → Rn is a differentiable function in Ck
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The solution

▶ We are looking for time invariant policy rules and transition
equations:

yt = g(yt−1, ut , σ)

⇒ yt+1 = g(yt , ut+1, σ)

= g(g(yt−1, ut , σ), ut+1, σ)

▶ Define:

Fg (yt−1, ut , ut+1, σ) = f (g(g(yt−1, ut , σ), ut+1, σ), g(yt−1, ut , σ), yt−1, ut)

▶ Our problem can be restated as:

Et [Fg (yt−1, ut , ut+1, σ)] = 0

▶ Solve a DSGE model ⇔ Identify the unknown function g
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Steady state

▶ A deterministic steady state, y⋆, for the model satisfies

f (y⋆, y⋆, y⋆, 0) = 0

▶ A model can have several steady states, but only one of them will be
used for approximation.

▶ Furthermore, the solution function satisfies:

y⋆ = g(y⋆, 0, 0)

▶ If the analytical steady state is available, it should be provided to
dynare.
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First order approximation, I

▶ Let ŷ = yt−1 − y⋆, u = ut , u+ = ut+1, fy+ = ∂f
∂yt+1

, fy = ∂f
∂yt

,

fy− = ∂f
∂yt−1

, fu = ∂f
∂ut

, gy = ∂g
∂yt−1

, gu = ∂g
∂ut

, gσ = ∂g
∂σ . All the

derivatives are evaluated at the deterministic steady state.

▶ With a first order Taylor expansion of F around y⋆:

0 ≃ Fg
(1)(y−, u, u+, σ) =

fy+ (gy (gy ŷ + guu + gσσ) + guu+ + gσσ)

+ fy (gy ŷ + guu + gσσ) + fy− ŷ + fuu

▶ What has changed? We now have three unknown “parameters”
(gy , gu and gσ) instead of an infinite number of parameters
(function g).
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First order approximation, II

▶ Taking the conditional expectation conditional and factorizing:

0 ≃
(
fy+gygy + fygy + fy−

)
ŷ + (fy+gygu + fygu + fu) u

+ (fy+gygσ + fy+gσ + fygσ)σ

▶ This “equality” must hold for any value of (ŷ , u, σ) ⇒ the terms
between brackets must be zero. We have three (multivariate)
equations and three (multivariate) unknowns:

0 = fy+gygy + fygy + fy−
0 = fy+gygu + fygu + fu

0 = fy+gygσ + fy+gσ + fygσ
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First order approximation, III
Certainty equivalence

▶ Assuming that gy is known, we must have:

fy+gygσ + fy+gσ + fygσ = 0

▶ Solving for gσ, we obtain:
gσ = 0

▶ This is a manifestation of the certainty equivalence property of the
first order approximation: the policy rules and transition equations
do not depend on the size of the structural shocks.

▶ In this sense, future uncertainty does not matter.

23/34 cz

https://creativecommons.org/publicdomain/zero/1.0/
https://mnemosyne.ithaca.fr/stephane/dynare-intro-and-first-order.git


First order approximation, IV
Recovering the marginal effect of contemporaneous innovations, gu

▶ Assuming that gy is known, we must have:

fy+gygu + fygu + fu = 0

▶ Solving for gu, we obtain

gu = − (fy+gy + fy )
−1 fu

▶ Note that fy+gy + fy must be a full rank matrix

▶ gu is the marginal effect of the structural innovations on the
endogenous (jumping and states) variables

▶ Future uncertainty does not matter, but the contemporaneous
innovations do affect the endogenous variables
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First order approximation, V
Recovering the marginal effect of the past, gy

▶ We must have: (
fy+gygy + fygy + fy−

)
ŷ = 0 ∀ŷ

▶ This is a quadratic equation, but the unknown is a matrix! It is
generally impossible to solve this equation analytically as we would
do for a univariate quadratic equation

▶ If we interpret gy as a lead operator, we can rewrite the equation as
a second order recurrent equation:

fy+ ŷt+1 + fy ŷt + fy− ŷt−1 = 0

▶ For a given initial condition, ŷt−1, we have many paths (ŷt , ŷt+1)
consistent with the second order recurrent equation

▶ We need another condition to pin-down a unique solution.
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First order approximation, VI
Recovering the marginal effect of the past, gy

▶ We can rewrite the second order recurrent equation as a first order
recurrent equation for zt ≡ (ŷ ′

t , ŷ
′
t+1)

′:

(
0n fy+
In 0n

)(
ŷt
ŷt+1

)
︸ ︷︷ ︸

zt

=

(
−fy− −fy
0n In

)(
ŷt−1

ŷt

)
︸ ︷︷ ︸

zt−1

▶ An admissible path zt must also be such that the transitions, from
t − 1 to t or from t to t + 1, are time invariant: ceteris paribus we
have ŷt = gy ŷt−1 and ŷt+1 = gy ŷt .

▶ In the sequel we examine the conditions under which gy exists and
allows to pin down a unique stable trajectory for the endogenous
variables.
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First order approximation, VII
Recovering the marginal effect of the past, gy

(
0n fy+
In 0n

)
︸ ︷︷ ︸

D

(
In
gy

)
gy ŷ︸ ︷︷ ︸

zt

=

(
−fy− −fy
0n In

)
︸ ︷︷ ︸

E

(
In
gy

)
ŷ︸ ︷︷ ︸

zt−1

⇔ Dzt = Ezt−1

▶ Stability of the dynamical system is related to the eigenvalues (a
stable eigenvalue is smaller than one in modulus)

▶ But matrix D is not necessarily invertible

▶ We use a generalized Schur decomposition of matrices D and E and
compute generalized eigenvalues
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First order approximation, VIII
▶ The real generalized Schur decomposition of the pencil < E ,D >:

D = QTZ

E = QSZ

with T upper triangular, S quasi-upper triangular, Q ′Q = I and
Z ′Z = I

▶ Generalized eigenvalues λi solves

λiDvi = Evi

For diagonal blocks on S of dimension 1× 1:
▶ Tii ̸= 0: λi =

Sii
Tii

∈ R
▶ Tii = 0, Sii > 0: λ = +∞
▶ Tii = 0, Sii < 0: λ = −∞
▶ Tii = 0, Sii = 0: λ ∈ C

Diagonal blocks of dimension 2× 2 correspond to conjugate complex
eigenvalues.
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First order approximation, IX
Recovering the marginal effect of the past, gy

▶ Applying the Schur decomposition and multiplying by Q ′ we obtain:

(
T11 T12

0 T22

)(
Z11 Z12

Z21 Z22

)(
In
gy

)
gy ŷ =

(
S11 S12

0 S22

)(
Z11 Z12

Z21 Z22

)(
In
gy

)
ŷ

▶ Matrices S and T are arranged in such a way that the stable
eigenvalues come first.

▶ First block of lines, in S and T are for the stable eigenvalues. The
rows of Z are partitioned accordingly.

▶ The columns of Z are partitioned consistently with In and gy .
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First order approximation, X
Recovering the marginal effect of the past, gy

▶ To exclude explosive trajectories, one must impose

Z21 + Z22gy = 0

▶ Or equivalently:
gy = −Z−1

22 Z21

▶ A unique stable trajectory exists if Z22 is square and non-singular.

Blanchard and Kahn’s condition
A unique stable trajectory exists if there are as many roots larger than
one in modulus as there are forward–looking variables in the model and
the rank condition is satisfied.
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First order approximation, XI
Reduced form solution

▶ Finally, we have:
ŷt = gy ŷt−1 + guϵt

⇔ yt = (In − gy )y
⋆ + gyyt−1 + guϵt

▶ The unconditional expectation of yt is the deterministic steady state,
E [yt ] = y⋆. This is a manifestation of the certainty equivalence
property

▶ The unconditional covariance matrix, Σy = V [yt ], must solve:

Σy = gyΣyg
′
y + guΣϵg

′
u

Specialized algorithms exist to solve efficiently this kind of
equations... Otherwise the vec operator and kronecker product can
be used (not efficient):

vecΣy = (In2 − gy ⊗ gy )
−1

vecguΣϵg
′
u
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First order approximation, XII
Reduced form solution

▶ Inverting the reduced form, we obtain the MA(∞) representation:

⇔ yt = y⋆ +
∞∑
i=0

g i
yguϵt−i

▶ Let ej be the j-th column of In

▶ The sequence {g i
yguej}∞i=0 is the IRF associated to a unitary shock

on the j-th innovation

▶ If the innovations are not orthogonal (which is a bad practice) a
Cholesky decomposition can be used.
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Let’s play!

1 model ;
2

3 1/C = beta ∗(1/C(+1) ) ∗( a l pha ∗A(1) ∗Kˆ( a lpha −1)∗N(1) ˆ(1− a lpha
) + (1− d e l t a ) ) ;

4

5 B∗Nˆ(gamma) = (1/C)∗(1− a lpha ) ∗A∗K(−1) ˆ( a lpha ) ∗Nˆ(− a lpha ) ;
6

7 Y = A∗K(−1) ˆ( a lpha ) ∗Nˆ(1− a lpha ) ;
8

9 K = I + (1− d e l t a ) ∗K(−1) ;
10

11 Y = C + I + G;
12

13 G = GY∗Y;
14

15 l o g (A) = rhoA∗ l o g (A(−1) ) + eA ;
16

17 l o g (GY) = (1−rhoGY ) ∗ l o g ( GYstar ) + rhoGY∗ l o g (GY(−1) ) + eG ;
18

19 l o g (B) = (1−rhoB ) ∗ l o g ( Bs ta r ) + rhoB∗ l o g (B(−1) ) + eB ;
20

21 end ;

33/34 cz

https://creativecommons.org/publicdomain/zero/1.0/
https://mnemosyne.ithaca.fr/stephane/dynare-intro-and-first-order.git


Let’s play!

▶ Do you recognize the model?

▶ Write a complete mod file for this model

▶ Compute the steady state (with a nonlinear solver and with a closed
form solution)

▶ Simulate the model
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