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Introduction

I In this chapter we present the Bayesian approach to econometrics.

I Basically, this approach allows to incorporate prior knowledge about
the model and its parameters in the inference procedure.

I We will only deal with problems for which closed form solutions exist
(linear models).

I In general DSGE models do not admit closed form solutions for the
posterior distribution. We will deal with these models in the next
chapter.
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MV Estimation

I A model (M) defines a joint probability distribution parameterized
(by θM) function over a sample of variables (say YT ):

f (YT |θM,M) (1)

I The parameters θM can be estimated by confronting the model to
the data through:

– Some moments of the DGP.
– The probability density function of the DGP (all the moments).

I The first approach is a method of moments, the second one
corresponds to the Maximum Likelihood approach.

I Basically, a MV estimate for θM is obtained by maximizing the
density of the sample with respect to the parameters (we seek the
value of θM that maximizes the “probability of occurence” of the
sample given by the Nature).

I In the sequel, we will denote L(θ) = f (YT |θ) the likelihood function,
omitting the indexation with respect to the model when not
necessary.
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MV Estimation
A simple static model

I As a first example, we consider the following model:

yt = µ0 + εt (2-a)

where εt ∼
iid
N (0, 1) and µ0 is an unknown finite real parameter.

I According to this model, yt is normally distributed:

yt |µ0 ∼ N (µ0, 1)

and E[ytys ] = 0 for all s 6= t.

I Suppose that a sample YT = {y1, . . . , yT} is available. The
likelihood is defined by:

L(µ) = f (y1, . . . , yT |µ)

I Because the ys are iid, the joint conditional density is equal to a
product of conditional densities:

L(µ) =
T∏
t=1

g(yt |µ)
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MV Estimation
A simple static model

I Because the model is Gaussian:

L(µ) =
T∏
t=1

1√
2π

e−
(yt−µ)2

2

I Finally we have:

L(µ) = (2π)−
T
2 e−

1
2

∑T
t=1(yt−µ)2

(2-b)

I Note that the likelihood function depends on the data.

I Suppose that T = 1 (only one observation in the sample). We can
graphically determine the ML estimator of µ in this case.
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MV Estimation
A simple static model (cont’d)

•

•
y1

f (y1|µ = µ̄)

YT

L(µ)

Clearly, the value of the density of y1 conditional on µ, ie the likelihood, is

maximized for µ = y1: for any µ̄ 6= y1 we have f (y1|µ = µ̄) < f (y1|µ = y1)
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MV Estimation
A simple static model (cont’d)

⇒ If we have only one observation, y1, the Maximum Likelihood
estimator is the observation: µ̂ = y1.

I This estimator is unbiased and its variance is 1.

I More generally, one can show that the maximum likelihood
estimator is equal to the sample mean:

µ̂T =
1

T

T∑
t=1

yt (2-c)

I This estimator is unbiased and its variance is given by:

V [µ̂T ] =
1

T
(2-d)

I Because V [µ̂] goes to zero as the sample size goes to infinity, we
know that this estimator converges in probability to the true value
µ0 of the unknown parameter:

µ̂T
proba−→

T→∞
µ0
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The ML estimator of µ must satisfy the following first order condition (considering the log of the likelihood):

T∑
t=1

(
yt − µ̂T

)
= 0

⇔ T µ̂T =
T∑
t=1

yt

⇔ µ̂T =
1

T

T∑
t=1

yt

We establish that this estimator is unbiased by showing that its unconditional expectation is equal to the true value of µ. We have:

E
[
µ̂T
]

=
1

T
E

 T∑
t=1

yt


=

1

T

T∑
t=1

E
[
µ0 + εt

]

=
1

T
Tµ0 + 0

= µ0

where the second equality is obtained by linearity of the unconditional expectation and by substituting the DGP. Following the same steps,
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we easily obtain the variance of the ML estimator:

V
[
µ̂T
]

=
1

T2
V

 T∑
t=1

yt


=

1

T2

T∑
t=1

V
[
µ0 + εt

]

=
1

T2
TV[εt ] + 0

=
1

T

where the second equality is a consequence of the independence of the ys. If the variance of ε is not unitary we obtain V
[
µ̂T
]

= σ2
ε/T

instead. The smaller is the size of the perturbation (or the greater is the sample), the more precise is the ML estimator of µ. This result
is intuitive, the more noise we have in the sample (larger variance of ε) the more difficult is the extraction of the true value of µ.
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MV Estimation
A simple dynamic model

I Suppose that the data are generated by an AR(1) model:

yt = ϕyt−1 + εt

with |ϕ| < 1 and εt ∼
iid
N
(
0, σ2

ε

)
.

I In this case, yt depends (directly) on yt−1 and also on yt−2, yt−3, ....

I It is no more legal to write the likelihood as the as a product of
marginal densities of the observations.

Ex. 1

Show that the density of y ≡ (yt , yt+1, . . . , yt+H−1)′ is given by:

f (y) = (2π)−
H
2 |Σy |−

1
2 e−

1
2
y′Σ−1

y y

with

Σy =
σ2
ε

1 − ϕ2


1 ϕ ϕ2 . . . . . . ϕH−1

ϕ 1 ϕ ϕ2 . . . ϕH−2

.

.

.

ϕH−1 ϕH−2 . . . . . . ϕ 1


under the assumption of stationarity.

cba

http://creativecommons.org/licenses/by-sa/3.0/legalcode
https://git.adjemian.eu/University/bayesian-econometrics-primer


MV Estimation
A simple dynamic model

Ex. 2
Let YT = {y1, y2, . . . , yT} be the sample. Write the likelihood function of the
AR(1) model under the assumption of stationarity. Admitting that the inverse
of the covariance matrix, Σy , can be factorized as Σ−1

y = σ−2
ε L′L with:

L =



√
1 − ϕ2 0 0 . . . 0 0

−ϕ 1 0 . . . 0 0
0 −ϕ 1 . . . 0 0

.

.

.

.

.

.
0 −ϕ 1



a T × T matrix, show that the likelihood function can be written as:

L(ϕ, σ2
ε) = (2π)−

T
2

(
σ2
ε

1− ϕ2

)− 1
2

σT−1
ε e

− 1−ϕ2

2σ2
ε

y2
1
e
− 1

2σ2
ε

∑T
t=2(yt−ϕyt−1)2
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Bayes theorem

I Let A and B be two events.

I Let P(A) and P(B) be the marginal probabilities of these events.

I Let P(A ∩ B) be the joint probability of events A and B.

I The Bayes theorem states that the probability of B conditional on A
is given by:

P(B|A) =
P(A ∩ B)

P(A)

I Or equivalently, that a joint probability can be expressed as the
product of a conditional density and a marginal density:

P(A ∩ B) = P(B|A)P(A)

⇒ P(B|A) =
P(A|B)P(B)

P(A)

I Same for continuous random variables.
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Prior and posterior beliefs

I We assume that we are able to characterize our prior knowledge
about a parameter with a probability density function.

I Let p0(θ) be the prior density characterizing our beliefs about the
vector of parameters θ.

I Our aim is to update our (prior) beliefs about θ with the sample
information (YT ) embodied in the likelihood function,
L(θ) = f (YT |θ).

I We define the posterior density, p1(θ|YT ), which represents our
updated beliefs.

I By the Bayes theorem we have:

p(θ|YT ) =
g(θ,YT )

p(YT )

and

p(θ|YT ) =
f (YT |θ)p0(θ)

p(YT )

where g is the joint density of the sample and the parameters.
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Prior and posterior beliefs (cont’d)

I The posterior density is given by:

p(θ|YT ) =
L(θ)p0(θ)

p(YT )

I Noting that the denominator does not depend on the parameters, we
have that the posterior density is proportional (w.r.t θ) to the
product of the likelihood and the prior density:

p(θ|YT ) ∝ L(θ)p0(θ)

I All the posterior inference about the parameters can be done with
the posterior kernel: L(θ)p0(θ).

I The denominator is the marginal density of the sample. Because a
density has to sum up to one, we have:

p(YT ) =

∫
f (YT |θ)p0(θ)dθ

The marginal density is a weighted average of the likelihood function
→ will be used later for model comparison.
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Prior and posterior beliefs
A simple static model (cont’d)

I For the sake of simplicity, we will see why later, we choose a
Gaussian prior for the parameter µ, with prior expectation µ0 and
prior variance σ2

µ:

p0(µ) =
1

σµ
√

2π
e
− 1

2σ2
µ

(µ−µ0)2

I The smaller is the prior variance, σ2
µ, the more informative is the

prior.

I The posterior density is proportional to the product of the prior
density and the likelihood:

p1(µ|YT ) ∝ 1

σµ
√

2π
e
− 1

2σ2
µ

(µ−µ0)2

(2π)−
T
2 e−

1
2

∑T
t=1(yt−µ)2

I One can show that the righthand side expression is proportional to a
Gaussian density.
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Prior and posterior beliefs
A simple static model (cont’d)

Ex. 3
Show that the likelihood can be equivalently written as:

L(µ) = (2π)−
T
2 e−

1
2 (νs2+T (µ−µ̂)2)

with ν = T − 1 and

s2 =
1

ν

T∑
t=1

(yt − µ̂)2

I s2 and µ̂ are sufficient statistics: they convey all the necessary
sample information regarding the inference w.r.t µ.

I We use this alternative expression of the likelihood to show that the
posterior density is Gaussian. We have:

p1(µ|YT ) ∝ 1

σµ
(√

2π
)T+1

e
− 1

2σ2
µ

(µ−µ0)2− ν2 s
2− T

2 (µ−µ̂)2
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We have

T∑
t=1

(yt − µ)2 =
T∑
t=1

([yt − µ̂] − [µ − µ̂])2

=
T∑
t=1

(yt − µ̂)2 +
T∑
t=1

(µ − µ̂)2 − 2
T∑
t=1

(yt − µ̂)(µ − µ̂)

= νs2 + T (µ − µ̂)2 − 2

 T∑
t=1

yt − T µ̂

 (µ − µ̂)

= νs2 + T (µ − µ̂)2

the last term cancels out by definition of the sample mean.
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Prior and posterior beliefs
A simple static model (cont’d)

I We can simplify the previous expression by omitting all the
multiplicative terms not related to µ (this is legal because we are
interested in a proportionality w.r.t µ):

p1(µ|YT ) ∝ e
− 1

2σ2
µ

(µ−µ0)2− T
2 (µ−µ̂)2

I We develop the quadratic forms and remove all the terms appearing
additively (under the exponential function); we obtain:

p1(µ|YT ) ∝ e
− 1

2 (σ−2
µ +T)

(
µ−

T µ̂+µ0σ
−2
µ

T+σ
−2
µ

)2

I We recognize the expression of a Gaussian density (up to a scale
parameter that does not depend on µ).
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Let A(µ) = 1
σ2
µ

(
µ − µ0

)2 + T (µ − µ̂)2. We establish the last expression of the posterior kernel by rewriting A(µ) as:

A(µ) = T (µ − µ̂)2 +
1

σ2
µ

(µ − µ0)2

= T
(
µ

2 + µ̂2 − 2µµ̂
)

+
1

σ2
µ

(
µ

2 + µ2
0 − 2µµ0

)

=

T +
1

σ2
µ

µ2 − 2µ

T µ̂ +
1

σ2
µ

µ0

 +

T µ̂2 +
1

σ2
µ

µ
2
0



=

T +
1

σ2
µ


µ2 − 2µ

T µ̂ + 1
σ2
µ
µ0

T + 1
σ2
µ

 +

T µ̂2 +
1

σ2
µ

µ
2
0



=

T +
1

σ2
µ


µ −

T µ̂ + 1
σ2
µ
µ0

T + 1
σ2
µ


2

+

T µ̂2 +
1

σ2
µ

µ
2
0



−

(
T µ̂ + 1

σ2
µ
µ0

)2

T + 1
σ2
µ

In the last equality, the two last additive terms do not depend on µ and can be therefore omitted.
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Prior and posterior beliefs
A simple static model (cont’d)

I The posterior distribution is Gaussian with (posterior) expectation:

E [µ] =
T µ̂+ 1

σ2
µ
µ0

T + 1
σ2
µ

and (posterior) variance:

V [µ] =
1

T + 1
σ2
µ

I As soon as the amount of prior information is positive (σ2
µ <∞) the

posterior variance is less than the variance of the maximum
likelihood estimator (1/T).

I The posterior expectation is a convex combination of the maximum
likelihood estimator and the prior expectation.
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Prior and posterior beliefs
A simple static model (cont’d)

I The Bayesian approach can be interpreted as a bridge between the
calibration approach (σ2

µ = 0, infinite amount of prior information)

and the ML approach (σ2
µ =∞, no prior information):

E [µ] −−−−→
σ2
µ→0

µ0

and
E [µ] −−−−→

σ2
µ→∞

µ̂

I The more important is the amount of information in the sample, the
smaller will be the gap between the posterior expectation and the
ML estimator.
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Nuisance parameters

I One of the main advantages of the Bayesian approach is related to
the treatment of the nuisance parameters.

I Suppose that the vector of estimated parameters is partitioned as
θ′ ≡ (θ′a, θ

′
b) and that we are only interested in θa (θb holds the

nuisance parameters).

I The posterior density of θa is given by:

p1(θa|YT ) =

∫
p1(θa, θb|YT )dθb

=

∫
p1(θa|θb,YT )p1(θb|YT )dθb

I Nuisance parameters are eliminated by integrating them out!

I The marginal posterior density of θa is a weighted average of the
conditional posterior density of θa knowing θb (the weights are given
by the marginal posterior density of the nuisance parameters).
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Nuisance parameters
A simple static model (cont’d)

I Suppose that the variance of εt is unknown, and has to be estimated
jointly with µ.

I We need to choose a joint prior for µ and σ2
ε , denoted p0(µ, σ2

ε ).
I This prior joint density can be factorized as:

p0(µ, σ2
ε ) = p0(µ|σ2

ε )p0(σ2
ε )

I We choose a Gaussian density for the prior conditional density of µ
knowing σ2

ε :
µ|σ2

ε ∼0 N
(
µ0, σ

2
µ

)
I We choose an inverse gamma density for the marginal prior density

of σ2
ε :

σ2
ε ∼0 IG

(
ν, s2

)
Ex. 4

Show that the posterior density of (µ, σ2
ε) has the same shape than the prior

density. Compute the marginal posterior density of µ.
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Point estimate

I The outcome of the Bayesian approach is a (posterior) probability
density function.

I But people generally expect much less information: a point estimate
is often enough for most practical purposes (a single value for each
parameter with a measure of uncertainty).

⇒ We need to reduce a function to a “representative” point.

I This is a well known in statistics and in microeconomics (choice
under uncertainty).

I Let L(θ, θ̂) be the loss incurred if we choose θ̂ while θ is the true
value.

I The idea is to choose the value of θ that minimizes this loss... But
the true value of θ is obviously unknown, so we minimize the
(posterior) expected loss instead:

θ? = arg min
θ̂

E
[
L(θ, θ̂)

]
= arg min

θ̂

∫
L(θ, θ̂)p1(θ|YT )dθ

I The choice of the loss function is purely arbitrary, for each loss we
will obtain a different point estimate.
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Point estimate
Quadratic loss function (L2 norm)

I Suppose that the loss function is quadratic:

L(θ, θ̂) = (θ − θ̂)′Ω(θ − θ̂)

where Ω is a symmetric positive definite matrix. Note that this
function returns a (real) scalar.

I The (posterior) expectation of the loss is:

E
[
L(θ, θ̂)

]
= E

[
(θ − θ̂)′Ω(θ − θ̂)

]
= E

[(
θ − Eθ −

(
θ̂ − Eθ

))′
Ω
(
θ − Eθ −

(
θ̂ − Eθ

))]
= E

[
(θ − Eθ)′ Ω (θ − Eθ)

]
+ (θ̂ − Eθ)′Ω(θ̂ − Eθ)

I Noting that the first term does not depend on the choice variable, θ̂,
the expected loss is trivially minimized when θ̂ is equal to the
(posterior) expectation of θ:

θ? = E [θ]

⇒ If the loss is quadratic the optimal point estimate is the posterior
expectation.
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Point estimate
Absolute value loss function (L1 norm)

I Suppose that θ is a scalar defined over [a, b] and that the loss
function:

L(θ, θ̂) = |θ − θ̂|
I The (posterior) expectation of the loss is:

E
[
L(θ, θ̂)

]
=

∫ b

a
|θ − θ̂|p1(θ|YT )dθ

=

∫ θ̂
a

(θ̂ − θ)p1(θ|YT )dθ +

∫ b

θ̂
(θ − θ̂)p1(θ|YT )dθ

= θ̂P(θ̂|YT ) − θ̂
(
P(1 − θ̂|YT )

)
+

∫ b

θ̂
θp1(θ|YT )dθ −

∫ θ̂
a
θp1(θ|YT )dθ

where P(x |YT ) is the posterior cumulative distribution function.

Ex. 5
Show that the optimal point estimate is the median of the posterior distribution
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Marginal density of the sample

I If we are only interested in inference about the parameters, the
marginal density of the data, p(YT ), can be omitted.

I We already saw that the marginal density of the data is:

p(YT ) =

∫
f (YT |θ)p0(θ)dθ

I The marginal density of the sample acts as a constant of integration
in the expression of the posterior density.

I The marginal density of the sample is an average of the likelihood
function (for different values of the estimated parameters) weighted
by the prior density.

⇒ The marginal density of the sample is a measure of fit, which does
not depend on the parameters (because we integrate them out).

I Note that, theoretically, it is possible to compute the marginal
density of the sample (conditional on a model) without estimating
the parameters.
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Marginal density of the sample
A simple static model (cont’d)

I Suppose again that the sample size is T = 1. The likelihood is given
by:

f (YT |µ) =
1√
2π

e−
1
2 (y1−µ)2

I The marginal density is then given by:

p(YT ) =

∫ ∞
−∞

f (y1|µ)p0(µ)dµ

= (2πσµ)−1

∫ ∞
−∞

e
− 1

2

(
(y1−µ)2+

(µ−µ0)2

σ2
µ

)
dµ

=
1√

2π(1 + σ2
µ)

e
− (y1−µ0)2

2(1+σ2
µ)

I We can directly obtain the same result by noting that y1 is the sum
of two Gaussian random variables: N (0, 1) and N

(
µ0, σ

2
µ

)
.
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Marginal density of the sample
Model comparison

I Suppose we have two models A and B (with two associated vectors
of deep parameters θA and θB) estimated using the same sample
YT .

I For each model I = A,B we can evaluate, at least theoretically, the
marginal density of the data conditional on the model:

p(YT |I) =

∫
f (YT |θI , I)p0(θI |I)dθI

by integrating out the deep parameters θI from the posterior kernel.

I p(YT |I) measures the fit of model I. If we have to choose between
models A and B we will select the model with the highest marginal
density of the sample.

I Note that models A and B need not to be nested (for instance, we
do not require that θA be a subset of θB) for the comparison to
make sense, because the compared marginal densities do not depend
on the parameters. The classical approach (comparisons of
likelihoods) by requiring nested models is much less obvious.
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Marginal density of the sample
Model comparison (cont’d)

I Suppose we have a prior distribution over models A and B: p(A)
and p(B).

I Again, using the Bayes theorem we can compute the posterior
distribution over models:

p(I|YT ) =
p(I)p(YT |I)∑

I=A,B p(I)p(YT |I)

I This formula may easily be generalized to a collection of N models.

I In the literature posterior odds ratio, defined as:

p(A|YT )

p(B|YT )
=

p(A)

p(B)

p(YT |A)

p(YT |B)

are often used to discriminate between different models. If the
posterior odds ratio is large (>100) we can safely choose model A.
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Marginal density of the sample
Model comparison (cont’d)

I Note that we do not necessarily have to choose one model.

I Even if a model has a smaller posterior probability (or marginal
density) it may provide useful informations in some directions (or
frequencies), so we should not discard this information.

I An alternative is to mix the models.

I If these models are used for forecasting inflation, we can report an
average of the forecasts weighted by the posterior probabilities,
p(I|YT ), instead of the forecasts of the best model (in terms of
marginal density) → Bayesian averaging.
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Predictive density

I We often seek to use the estimated model to do inference about
unobserved variables.

I The most obvious example is the forecasting exercise.

I In the Bayesian context the density of an unobserved variable (for
instance the future growth of GDP) given the sample, is called a
predictive density.

I Let ỹ be a vector of unobserved variables. The joint posterior
density of ỹ and θ is:

p1(ỹ , θ|YT ) = g(ỹ |θ,YT )p1(θ|YT )

I The predictive density is obtained by integrating out the parameters:

p(ỹ |YT ) =

∫
g(ỹ |θ,YT )p1(θ|YT )dθ

The predictive density is the average of the density of ỹ knowing the
parameters weighted by the posterior density of the parameters.
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Predictive density
A simple static model (cont’d)

I Suppose that we want to do inference about the out of sample
variable yT+1 (forecast).

I The density of yT+1 conditional on the sample and on the parameter
is:

g(yT+1|µ,YT ) ∝ e−
1
2 (yT+1−µ)2

Note that this conditional density does not depend on YT because
the model is static (for an autoregressive model, yT+1 and yT would
appear under the quadratic term).

I Remember that the posterior density of µ is:

p1(µ|YT ) ∝ e−
1

2V[µ] (µ−E[µ])2

where E[µ] and V[µ] are the posterior first and second order
moments obtained earlier.
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Predictive density
A simple static model (cont’d)

I The predictive density for yT+1 is given by:

p(yT+1|YT ) =

∫
g(yT+1|µ,YT )p1(µ|YT )dµ

∝
∫ ∞
−∞

e−
1
2 (yT+1−µ)2− 1

2V[µ] (µ−E[µ])2

dµ

Ex. 6
Show that minus two times the terms under the exponential in the last
expression can be rewritten as:

A(µ) =

[
1 +

1

V[µ]

](
µ− yT+1 + V[µ]−1

1 + V[µ]−1

)2

+
V[µ]−1

1 + V[µ]−1
(yT+1 − E[µ])2
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Predictive density
A simple static model (cont’d)

I Substituting A(µ) in the expression of the predictive density for yT+1

we obtain:

p(yT+1|YT ) ∝
∫ ∞
−∞

e
− 1

2 [1+ 1
V[µ] ]

(
µ− yT+1+V[µ]−1

1+V[µ]−1

)2

− 1
2

V[µ]−1

1+V[µ]−1 (yT+1−E[µ])2

dµ

∝ e
− 1

2
V[µ]−1

1+V[µ]−1 (yT+1−E[µ])2
∫ ∞
−∞

e
− 1

2 [1+ 1
V[µ] ]

(
µ− yT+1+V[µ]−1

1+V[µ]−1

)2

dµ

∝ e
− 1

2
V[µ]−1

1+V[µ]−1 (yT+1−E[µ])2

I Unsurprisingly, we recognize the Gaussian density:

yT+1|YT ∼ N (E[µ], 1 + V[µ])

I We would have obtained directly the same result by first noting that
yT+1 is the sum of two Gaussian random variables: N (E[µ],V[µ])
(for the estimated parameter) and N (0, 1) (for the error term).
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Predictive density
Point prediction

I For reporting our forecast, we may want to select one point in the
predictive distribution.

I We proceed as for the point estimate by choosing an arbitrary loss
function and minimizing the posterior expected loss.

I Usually the expectation of the predictive distribution is reported
(rationalized with a quadratic loss function).
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Asymptotic properties of the Bayesian approach

I The posterior density is proportional to the product of the likelihood
and the prior density.

I As the sample gets larger the relative weight of likelihood increases
(the prior does not depend on T ).

I Asymptotically (T →∞) the Bayesian estimator inherits all the
properties of the likelihood estimator.

I We know that under fairly general assumption, the likelihood is
asymptotically Gaussian (even for nonlinear models).

⇒ Asymptotically, the posterior distribution is Gaussian.

I If the (finite sample) posterior distribution is untractable or does not
possess a closed form expression, we can use an asymptotic
approximation (with the Gaussian distribution).
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Asymptotic properties of the Bayesian approach

I We know that:

p1(θ|YT ) ∝ p0(θ)f (YT |θ)

∝ p0(θ)e log f (YT |θ)

I Usually the log likelihood is O(T ) while the prior is O(1)

⇒ When T goes to infinity the density of the sample conditional on the
parameters dominates the prior density (which can be neglected if T
is large enough).

I For instance, in the simple static model we have:

log f (YT |µ) = −T

2
log(2π)− T − 1

2
s2 − T (µ− µ̂)2

which grows linearly with T .
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Asymptotic properties of the Bayesian approach
Approximation

I Let θ̂ be the posterior mode obtained by maximizing the posterior
kernel K(θ) ≡ L(θ)p0(θ).

I With an order two Taylor expansion around θ̂, we have:

logK(θ) = logK(θ̂) + (θ − θ̂)
∂ logK(θ)

∂θ

∣∣∣∣
θ=θ̂

+
1

2
(θ − θ̂)′

∂2 logK(θ)

∂θ∂θ′

∣∣∣∣
θ=θ̂

(θ − θ̂) +O
(
||θ − θ̂||3

)

I Equivalently:

logK(θ) = logK(θ̂)− 1

2
(θ − θ̂)′[H(θ̂)]−1(θ − θ̂) +O(||θ − θ̂||3)

where H(θ̂) is minus the inverse of the Hessian matrix evaluated at
the posterior mode.
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Asymptotic properties of the Bayesian approach
Approximation (cont’d)

I The posterior kernel can be approximated by:

K(θ) =̇ K(θ̂)e−
1
2 (θ−θ̂)′[H(θ̂)]−1(θ−θ̂)

I Up to a constant

c = K(θ̂)(2π)
k
2 |H(θ̂)| 12

where k is the number of estimated parameters, we recognize the
density of a multivariate Gaussian distribution.

I Completing for constant of integration we obtain an approximation
of the posterior density:

p1 (θ|YT ) =̇ (2π)−
k
2 |H(θ̂)|− 1

2 e−
1
2 (θ−θ̂)′[H(θ̂)]−1(θ−θ̂)
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Asymptotic properties of the Bayesian approach
Approximation (cont’d)

I If the model is stationnary the hessian matrix is of order O(T ), as T
tends to infinity the posterior distribution concentrates around the
posterior mode (which matches the ML estimator).

I This Gaussian approximation (namely the constant of integration c)
is often used to approximate the marginal density of sample (→
Laplace approximation).

I The asymptotic approximation is reliable iff the true (finite sample)
posterior distribution is not too far from a Gaussian distribution.
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Non informative priors

I Clearly, the inference will depend on the choice for the priors.

I The robustness of the results should be evaluated:

– By checking that the results do not change too much if we increase
the prior variance or consider more general prior shapes.

– By checking that the results do not change too much if we change
the parameterization of the model (which is equivalent to changing
the shapes of the priors).

I Because the results depend crucially on the choice for the priors, we
may want to do the inference with a non informative prior.

I Unfortunately there is no clear agreement in the literature about
what should be a non informative prior.

I In the sequel we review two non informative priors proposed by
Jeffrey.
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Non informative priors
Jeffrey-I

I For a parameter that admits positive and negative values, we
consider a uniform prior between −∞ and ∞.

I If the parameter is constrained to be positive we consider a uniform
prior between −∞ and ∞ for the log of the parameter.

I For a real scalar parameter, Jeffrey’s a priori density such that:

p0(θ)dθ ∝ dθ

For a vector of real parameters, take a product of such densities:

p0(θ)dθ ∝ dθ1dθ2 . . . dθn

I Obviously, this prior density is improper because the sum of the prior
is not finite: ∫ ∞

−∞
dθ =∞

I For Jeffrey, the improperness of this prior is precisely what we need
to define a non informative prior.
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Non informative priors
Jeffrey-I (cont’d)

I Because the prior is improper, we have:

P0(a < θ < b)

P0(c < θ < d)
=

0

0

meaning that wee cannot compare the events θ ∈ (a, b) and
θ ∈ (c , d)

I For Jeffrey the improperness of the prior is the formalization of our
ignorance.

I To understand this point, consider instead a bounded uniform prior
distribution:

p0(θ)dθ =
dθ

2M
∀ −M ≤ θ ≤ M

I This proper uniform prior is informative because:

P0(a < µ < b)

P0(c < µ < d)
=

b − a

d − c
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Non informative priors
Jeffrey-I (cont’d)

I If a parameter is constrained to be positive, Jeffrey suggest to put a
uniform prior on the log of the parameter.

I A non informative prior on σ > 0 is defined as:

θ = log σ

p0(θ)dθ ∝ dθ

I Because dθ = d log σ = dσ
σ , we can equivalently write this prior as:

p0(σ)dσ =
dσ

σ

I This prior is improper because
∫∞

0
dσ
σ is not finite.

I We also have: ∫ a

0

dσ

σ
=∞ and

∫ ∞
b

dσ

σ
=∞
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Non informative priors
Jeffrey-I (cont’d)

I Jeffrey’s flat prior is invariant with respect to a power
transformation.

I Suppose that φ = σn.

I Then dφ = nσn−1dσ and consequently:

dφ

φ
∝ dσ

σ

⇒ If we choose a flat prior for σ then we also have a flat prior on φ.

I This prior is not invariant with respect to other non linear
transformations.

I The improperness of the prior is not an issue (w.r.t the inference
about the parameters) as long as the posterior is proper (otherwise
posterior inference would not be possible).
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Non informative priors
A simple static model (cont’d)

I Suppose we change the Gaussian prior for µ by:

p0(µ)dµ ∝ dµ

I The posterior density is then characterized by:

p1(µ|YT ) = p0(µ)f (YT |µ)

∝ e−
1
2 (
∑T

t=1(yt−µ̂)2+T (µ−µ̂)2)

∝ e−
T
2 (µ−µ̂)2

I We recognize the expression of a Gaussian density (up to a scaling
term):

µ|YT ∼ N
(
µ̂,

1

T

)
I With a flat Jeffrey prior, the (Gaussian) posterior distribution is

centered around the ML estimator. The posterior variance is equal
to the variance of the ML estimator (no information in the prior).
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Non informative priors
Jeffrey-II

I Years latter, Jeffrey came with another non informative prior
generalizing the invariance property with respect to nonlinear
transformations of the parameters.

I Basically the idea is to mimic the information in the data. Jeffrey
proposes the following prior:

p0(θ) ∝ |Infθ|
1
2

where Infθ is the Fisher information matrix:

Infθ = −Ey

[
∂2 logL(θ)

∂θ∂θ′

]
where the expectation is an integral with respect to the density of
the sample.
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Non informative priors
Jeffrey-II (cont’d)

Invariance property

Suppose that we adopt the following priors for θ and η = F (θ) (where F
is a differentiable function):

p0(θ) ∝ |Infθ|
1
2 and p0(η) ∝ |Infη|

1
2

These two priors will lead to exactly the same posterior inference.

I This result states that the Jeffrey-II prior is invariant w.r.t. any non
linear re-parameterization of the model.

I To establish this result we just have to note that:

|Infθ|
1
2 = |JF ||Infη|

1
2

and also
dθ = |JF |−1dη

where JF is the Jacobian matrix of F .
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Non informative priors
A simple static model (cont’d)

Ex. 7
Show that the two Jeffrey’s non informative priors are equivalent in the simple
static model.

I Note that this result is not general. For instance in a dynamic model,
these two priors lead to very different posterior inference. See the
dispute about unit root testing in autoregressive models published in
a special issue of the Journal of Applied Econometics (1991).

I The Jeffrey II prior is also improper in general.
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