(stochastic) Extended path



Motivations

| 2

>

Nonlinearity can play an important role in macroeconomics.

Large deviations w.r.t. the steady state or occasionally binding
constraints: irreversible investment, borrowing constraint, ZLB.

Usual local approximation techniques don't work when there
are kinks.

Deterministic models can be solved with arbitrary accuracy,
unlike stochastic ones with perturbation.

The extended path approach aims to keep the ability of
deterministic methods to provide accurate account of
nonlinearities.



Model to be solved

st = Q(st—1, ue) (1a)
F(ye: xe, st Ee [6241]) = 0 (1b)
G(yt, Xe11, X, 5¢) = 0 (1c)
& = H(ye, xe, st) (1d)

st is a ns X 1 vector of exogenous state variables, u; ~ BB(0,%,) is
a n, x 1 multivariate innovation, x; is a n, x 1 vector of endogenous
state variables, y; is a n, x 1 vector of non predetermined variables
and &; is a ng x 1 vector of auxiliary variables.



Solving perfect foresight models

>

Perfect foresight models, after a shock economy returns
asymptotically to equilibirum.

For a long enough simulation, one can consider that for all
practical purpose the system is back to equilibrium.

This suggests to solve a two value boundary problem with
initial conditions for some variables (backward looking) and
terminal conditions for others (forward looking).

In practice, one can use a Newton method to the equations of
the model stacked over all periods of the simulation.

The Jacobian matrix of the stacked system is very sparse and
this characteristic must be used to write a practical algorithm.



Extended path approach
» Already proposed by Fair and Taylor (1983).

» The extended path approach creates a stochastic simulation as
if only the shocks of the current period were random.

» Substituting (1a) in (1d), define:
Er = E (Ve Xt, St—1, ur) = H(ye, xe, Q(s¢—1, Ut))
» The Euler equations (9) can then be rewritten as:
F(ve, xt, 5, Bt [6(Yer1, Xer1, St Uey1)]) =0

» The Extended path algorithm consists in replacing the previous
Euler equations by:

F(yt7Xt7 St, ég(yt+17xt+17 St, 0)) = 0



Extended path algorithm

Algorithm 1 Extended path algorithm

. H < Set the horizon of the perfect foresight (PF) model.
. (x*,y*) < Compute steady state of the model
(s0,x1) < Choose an initial condition for the state variables
.fort=1to T do
us <+ Draw random shocks for the current period
(¥t, Xt+1, St) < Solve a PF with y; 1 = y*
end for
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Extended path algorithm (time t nonlinear problem)

st = Q(se—1, ut)
0 = F(yt, xt, st, &(ye+1, Xt+1, 5t, 0))
0 = G(yt, Xt+1, Xt, St)

st+1 = Q(st, 0)

= F(yer1, xt+1, Se41, € (Ver2, Xet2, St41,0))

o o

= G(yt4+1, Xt4+2, Xt+1, St+1)

St+h = Q(St+h—1,0)
0 = F(Yewhs Xewhs Stvhy € Veaheas Xerhss Strhs 0))

0 = G(Ytih» Xt-+h+1> Xt+h> St+h)

st+H = Qst+H—1,0)
0

F(YH»Hv Xt+Hs St+H» ‘g(y* s Xt+H+15 St+H>s 0))

0 = G(Yt+H) Xt+H+1s Xt+H> St+H)



Extended path algorithm (discussion)

» This approach takes full account of the deterministic non
linearities...

» ... But neglects the Jensen inequality by setting future
innovations to zero (the expectation).

» We do not solve the rational expectation model! We solve a
model where the agents believe that the economy will not be
perturbed in the future. They observe new realizations of the
innovations in each period but do not update this belief...

» Uncertainty about the future does not matter here.

» EP > OccBin > First order perturbation



Stochastic extended path

» The strong assumption about future uncertainty can be
relaxed by approximating the expected terms in the Euler
equations (9):

F (yt7Xt7 St7Et [éaH—l]) =0

> We assume that, at time t, agents perceive uncertainty about
realizations of u¢i1, ..., us1k but not about the realizations of
usir for all 7 > k (which, again, are set to zero)

» Under this assumption, the expectations are approximated
using numerical integration.



Gaussian quadrature (univariate)

» Let X be a Gaussian random variable with mean zero and
variance o2 > 0, and suppose that we need to evaluate
E[¢(X)], where ¢ is a continuous function:

Bl = — = [ ploe Fax

» The integral can be approximated by a finite sum, using:

> 2 - nl\/n p(z”)
/ p(z)e % dx = Zw,-(p(z,-)+ '2\( (2n§|€)
i=1 '

— 00

where z; (i =1,...,n) are the roots of an order n Hermite
polynomial, and the weights w; are positive and summing up
to one (the error term is zero iff ¢ is a polynomial of order at
most 2n — 1). — x; = Zi/o/2



Gaussian quadrature (multivariate)

» Let X be a multivariate Gaussian random variable with mean
zero and unit variance, and suppose that we need to evaluate

E[p(X)] = (2r) % / p(x)e I xdx

RP

» Let {(wi,z)}7_; be the weights and nodes of an order n
univariate Gaussian quadrature.

» This integral can be approximated using a tensor grid:
/ o(z)e 724z ~ Z Wiy Wi 2(Zigs - 20)
Rp i1y00yip=1

» Curse of dimensionality 1: The number of terms in the sum
grows exponentially with the number of shocks.



Other numerical integration rules

» By default Dynare uses multivariate Gaussian quadrature to
approximate the expected terms.

> To cope with curse of dimensionality 1 we can consider
other numerical integration approaches:

— Cubature (ordre 3 or 5)
Set options_.ep.IntegrationAlgorithm to
’Stroud-Cubature-3’ or ’Stroud-Cubature-5’

— Unscented transform
Set options_.ep.IntegrationAlgorithm to ’Unscented’

» These alternatives rely on a smaller number of nodes, which
do not grow exponentially with the number of innovations.

» But there is another curse of dimensionality.



Forward histories (one shock, three nodes, order two SEP)

Curse of dimensionality 2

1
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— The tree of histories grows exponentially!



Fishbone integration

» \We can prune the tree of forward histories by removing low
probability branches...

» Or by considering that innovations, say, at time t + 1 and
t + 2 are unrelated variables.

» Analogy with a good at different periods in an intertemporal
general equilibrium model.

> |If we have n, innovations and if agents perceive uncertainty
for the next k following periods, we consider an integration
problem involving n, x k unrelated variables.

» We use a two points Cubature rule to compute the integral
(unscented transform with k = 0) — The complexity of the
integration problem grows linearly with n, or k



Fishbone history (one shock, two nodes, order three SEP)

Upy1 =d Upyp = U

ug ° °

U1 =4 Uy = U



Stochastic extended path algorithm

Algorithm 2 Stochastic Extended path algorithm

[y

. H < Set the horizon of the stochastic perfect foresight (SPF)
models.
(x*,y*) < Compute steady state of the model.
{(wi, )}, < Get weights and nodes for numerical integration
(S0, x1) < Choose an initial condition for the state variables
fort=1to T do

u; < Draw random shocks for the current period

(Vt, Xt+1,5t) < Solve a SPF model with y; i1 = y*
end for
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SEP algorithm (order 1, time t nonlinear problem)
Fori=1,....m

st = Q(st—1, ur)
F (yu Xt St Ziwig(Y;+1a Xt41, St Utf))

0 = G(yt, Xe+1, Xt, St)

o
Il

S;+1 = Q(st, i)
i i i i i
0= F(YH,],, Xt+15St110 g(yf+27 Xt12 5;+1a 0))

i i i
0= G(yHl, Xtp20 Xt+1; 5t+1)

i i
Serh = Qstrp—1:0)
_ i i i i i i
0= F(th, Xeyhs Sthr € Vephirr Xephito Serho 0))

i i i i
0 = G(Yeyh» Xtihi1s Xtshs Strn)

sty = Q(siyy_1,0)
0 = F(Yerr» Xett> Stati> €O Xty haas Seer 0))

i i i i
0 = G(YeyHs Xt Hi1r Xt Ho St H)



SEP algorithm (order 2, time t nonlinear problem)
For all (i,j) € {1,...,m}?

st = Q(se—1, ur)
0=F (Yu Xt St Zl_w,-g(y:+1, Xt41, St, ‘*i))
0 = G(yt, Xe41, Xt, St)
S£+1 = Q(st, ;)
0= F(ny, Xt+1, 5£+1v Zj“’jéa(yiljz’ X£+z’ 5£+1 s 145))
0 =G(y}y3, X}yas X1, Sl4a)

iy .
stiz = Q(5;+1 s uj)

ijo_ i
stin = Qlsih_1,0)
— g ad i) isj isj isj
0 = Flyln xin Seine EWelnins Xt nias Seine 0)

_ iJ o i i i
0= Gy s X pyar Xei o Stin)

ij ij
stiH = Q(stiH—l’o)

— isj i isj * isj
0 =Flus %t sein 07 Xt in stin 0)

_ i i isj isj
0= Gi s X Han Xeim Seim)



Stochastic extended path (discussion)

» The extended path approach takes full account of the
deterministic nonlinearities of the model.

» |t also takes into account the nonlinear effects of future shocks
k-period ahead.

> It neglects the effects of uncertainty in the long run.

» The Stochastic Perfect Foresight model, that must be solved
at each date, is huge.

» Curse of dimensionality with respect with the number of
innovations and the order of approximation but not with the
number of state variables!



Burnside (1998) model

» A representative household

» A single perishable consumption good produced by a single
"tree’.

» Household can hold equity to transfer consumption from one
period to the next

» Household's intertemporal utility is given by

0 0
E; Zﬁf—fcfgf] with 6 € (—o00,0) U (0, 1]
7=0

» Budget constraint is
Pt€t+1 + Ct = (pt + dt) et
> Dividends d; are growing at exogenous rate x;

dt =Xt dtfl

xe = (1—p)X+ pxe—1 + €



Dynamics

The price/dividend ratio, y; = Pt/d;, is given by
ye = BE; exen (14 yet1)
xe = (1—p)X+ pxe—1 + €

Iterating forward, y; can be written as the current value of future
dividends growth rates:

w .
S BreXia
i=1

S e T i+p'£r+zag1wet+f]

i=1

ye = E¢

=E;

Wlth )?t = X¢ — X.



The exact solution

Using formulas for the distribution of the log-normal random
variable, Burnside (1998) shows that the closed form solution is

[e.9]

Ve = Z Biea,'-i-b,')?t

i=1
where

920_2 l_pl 1_p2i
R _T9 (i_o 2
T Ay <I P1=p 7 1—p2)

and



The extended path approach

In the extended path approach, one sets future shocks to their
expected value, E[e;1¢] =0, £ =1,...,00. The corresponding

solution is given by
o0

_)/}t — Z B/ea,-—i-b,-xt

i=1

where
. 6202 ) W
aiIQXIW]-_p +/) 1_[)2)
and )
b — Hp(l—p’)
= U/
I-p

Note that we abstract from the accuracy errors introduced by the

numerical approximation of the integrals.



Numerical simulation

Calibration
x = 0.0179
p=—0.139
f=-15
8 =0.95
o = 0.0348

» The deterministic steady state is equal to 12.3035.
» The risky steady state, defined as the fix point in absence of

shock this period:
ZB’ 0%t 72 ( ~2 75 ﬂ+p21 p2’)

is equal to 12.4812.



Comparing extended path and closed-form solution

Difference between extended path approximation, y;, and
closed-form solution, y;.

» Using 800 terms to approximate the infinite summation

» Computing over 30000 periods

max (yr — y¢) = 0.1820

» The effect of future volatility is around 1%, y/;y = 0.0144,

and doesn’t depend much on the state of the economy.



Stochastic extended path

> A k-order stochastic extended path approach computes the
conditional expectation taking into accounts the shocks over
the next k periods.

» The closed formula is

o0

)\;t — Z B’eai+bixt

i=1

where
92 2 . 1— i 21_ 2 .
- ﬁ ’—2Pﬁ+P 1_22 for i<k
aj = 0xi+ 0252 b=k _pi 0 p2li—K) _ 2i ‘ .
2(1—p)? k—2p i, TP 12 ) or >k
and

0p (1 —,0")

b =
1—p



Quantitative evaluation

> What is the ability of the stochastic extended path approach
to capture the effect of future volatility? What part of the
difference between the risky steady state and deterministic
steady state is captured by different values of k?

» Deterministic steady state: 12.3035
> Risky steady state: 12.4812

» The contribution of k future periods
k  Percentage

1 7.4%
2 14.3%
9 50.0%
30 90.1%

60 99.0%



Hybrid approach, |

» A very large number of periods forward (the order of
stochastic extended path) is necessary to obtain an accurate
figure of the effects of future volatility.

» However, even a local approximation with a Taylor expansion
of low order provides better information on this effect of future
volatility.

» This suggests to combine the two approaches.



Hybrid approach, Il
Fori=1,...,#{nodes}:

st = Q(st—1, ut)

; 1
=F (ye,xt,st, Ziw/‘é’ Yera T 5800, Xt Sty

0 = G(yt, Xt+1, Xt, St)

o

5£+1 = Q(st, ui)

i i i i i
0= F(Y:+1’ X415 10 € (Veg2s Xep20 Seqas 0))

o

i i i
= G(YH,]_’ Xty2s Xt+1; 5t+1)

i i
Sern = Qlsep—1-0)
i i i i i i
0= F(yH»h’ Xtihs Strnr € Veihias Xtrhias Stin 0))

_ i i i i
0 = G(Yeyh» Xths1s Xt4hs Stoh)

Stir = QlS1—150)
0= F(yt,+H7 X£+H7 54+H» g(y**X4+H+1v s;+H' 0))

_ i i i i
0 = G(YeyHs Xt Ha1r Xt Ho St H)



Hybrid approach, Il

We compute the difference between the stochastic expended path
approximation of order 2, the hybrid approach of order 2 and the
closed-form solution, y;. We use 800 terms to approximate the
infinite summation and run simulations over 30000 periods.

Stochastic Hybrid stochastic
extended path  extended path
maximum difference 0.1607 0.0021
minimum difference 0.1513 0.0019




Irreversible investment

Consider the following RBC model with irreversible investment:

o0
max W = E Fu(cetj, le+j)
{Ct+j7lt+jukt+j+1}j:0 i—0
Ji
s.t.
Yt = Ct+ it

Y = Atf(kta /t)
kt+1 - it + (1 - (5)/(1_—
At = A*eat
at = pat—1 + €t
ir >0



Further specifications

The utility function is

(21— 1)=9)"
1—71

U(Ct, It) =

and the production function,

1
ke ) = (ki + (1= a)i)"



First order conditions

Uc(Ch /t) — Mt = BE: [Uc(Cr+17 /t+1) (At+1 fk(kt+17 /t+1) +1-— 5) - ,ut+1(1 - 5)}

U/(Ct,/t)
= Acfi(ke, |
ue(ce, ) ¢fi(ke, It)
¢t + key1 = Atf(kh /t) + (1 - 5)kt

0= e (ke — (1 — 0)ke)

where p; is the Lagrange multiplier associated with the constraint

on investment.



Calibration

B = 0.990
0 = 0.357
T = 2.000
a = 0.450
W = —0.500
§ = 0.020
p = 0.995

A* = 1.000
o = 0.100



Simulation

» Order: 0, 1, 2 and 3
» Integration nodes: 3 (Gaussian quadrature)

» Number of periods for auxiliary simulations (SPF): 200



The trajectory of investment
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The trajectory of investment
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Conclusion and future work

>

The extended path approach takes into account effects of
nonlinearities.

The stochastic extended path approach takes also partially
into account nonlinear effects of future volatility.

Possible to use an hybrid approach.

The approach suffers from the curse of dimensionality but it
can be mitigated.

Parallelization is possible if EP is used in estimation (SMM or
PF) but not in the SEP solver.

Improvements: produce IRFs with SEP, write a mex for
building the stacked SEP nonlinear problem.



