Estimation of nonlinear models with Dynare

stephane.adjemian@univ-lemans.fr

September, 2023

Introduction

- ▶ Full information estimation of models approximated at higher order...
- Or, in principle, full information estimation of nonlinear models.
- Cannot use the (linear) Kalman filter anymore.
- Dynare provides routines to evaluate the likelihood of models approximated at order k ≥ 1.

The reduced form model

$$s_t = f(s_{t-1}, \varepsilon_t; \theta)$$

 $y_t = g(s_t; \theta) + e_t$

▶ *f*(.) and *g*(.) are the state and measurement equations.

▶ $\theta \in \Theta \subseteq \mathbb{R}^m$ a vector of *m* parameters.

- Cannot use the (linear) Kalman filter anymore.
- \triangleright s_t and y_t are the vectors of state variables and observed variables.
- Innovations ε_t and e_t are the structural shocks and measurement errors.

•
$$\#(y_t) = \#(e_t)$$

Reduced form with second order approximation

► The "state" equations:

$$egin{aligned} s_t &= ar{s}(m{ heta}) + g_u(m{ heta}) \hat{s}_{t-1} + g_u(m{ heta}) arepsilon_t \ &+ 0.5 g_{\sigma\sigma}(m{ heta}) \ &+ 0.5 g_{yy}(m{ heta}) \left(\hat{s}_{t-1} \otimes \hat{s}_{t-1}
ight) \ &+ 0.5 g_{uu}(m{ heta}) \left(arepsilon_t \otimes arepsilon_t
ight) \ &+ 0.5 g_{uy}(m{ heta}) \left(arepsilon_t \otimes arepsilon_t
ight) \ &+ 0.5 g_{uy}(m{ heta}) \left(\hat{s}_{t-1} \otimes arepsilon_t
ight) \end{aligned}$$

► The measurement equations:

$$y_t = Zs_t + e_t$$

where Z is a selection matrix.

Properties of the state space model

• $s_t \sim$ first order Markov process:

$$p(s_t|s_{0:t-1}) = p(s_t|s_{t-1})$$

Observations are conditionally independent:

$$p(y_t|y_{1:t-1}, s_{0:t}) = p(y_t|s_t)$$

⇒ We cannot evaluate the likelihood, product of $p(y_t|y_{1:t-1})$ densities, without tracking the state variables.

Nonlinear filter (I)

Suppose $p(y_{t-1}|s_{t-1})$ is known \longrightarrow How to compute $p(y_t|s_t)$?

First we can predict the states in t given information in t - 1:

$$p(s_t|y_{1:t-1}) = \int p(s_t|s_{t-1})p(s_{t-1}|y_{1:t-1}) \,\mathrm{d}s_{t-1} \tag{1}$$

where $p(s_t|s_{t-1})$ is defined by the state equations:

$$p(s_t|s_{t-1}) = \int p(s_t|s_{t-1},\varepsilon_t) p(\varepsilon_t|s_{t-1}) d\varepsilon_t$$
$$= \int p(s_t|s_{t-1},\varepsilon_t) p(\varepsilon_t) d\varepsilon_t$$

Nonlinear filter (II)

▶ p(s_t|y_{1:t-1}) can be interpreted as our prior belief about the state variables.

Use Bayes theorem to update our beliefs:

$$p(s_t|y_{1:t}) = \frac{p(y_t|s_t) p(s_t|y_{1:t-1})}{p(y_t|y_{1:t-1})}$$
(2)

where:

$$p(y_t|y_{1:t-1}) = \int p(y_t|s_t) p(s_t|y_{1:t-1}) \,\mathrm{d}s_t$$

which is the conditional density required to evaluate the likelihood of the model.

▶ $p(y_t|s_t)$, likelihood of s_t , is defined by the measurement equations.

 \Rightarrow Iterate over (1) and (2).

Approximated nonlinear filter (I)

Approximate the distribution of $s_t | y_{1:t}$

Suppose the distribution of s_t|y_{1:t} can be accurately approximated by a set of nodes and weights {(s_tⁱ, ω_tⁱ)}_{i=1}^N, with non negative weights summing up to one.

$$\Rightarrow \text{ When } N \to \infty \sum_{i=1}^{N} \omega_i h(s_t^i) \text{ converges to } \mathbb{E}_{p(s_t|y_{1:t})}[h(s)].$$

Can be used to approximate the predictive densities:

$$\widehat{p}(s_t|y_{1:t-1}) = \sum_{i=1}^{N} p(s_t|s_{t-1}^i) \omega_{t-1}^i$$

▶ Particles \leftarrow random deviates from $s_t | y_{1:t}$.

• How to sample from
$$s_t | y_{1:t}$$
?

Approximated nonlinear filter (II)

Importance sampling (a)

Suppose we can sample from $q(s_t|y_{1:t})$ but not from $q(s_t|y_{1:t})$.

► Then:

$$\begin{split} \mathbb{E}_{p(s_t|y_{1:t})}\left[h(s)\right] &= \int \underbrace{\frac{p\left(s_t|y_{1:t}\right)}{q\left(s_t|y_{1:t}\right)}}_{\widetilde{w}_t(s_t)} q\left(s_t|y_{1:t}\right) h(s_t) \mathrm{d}s_t \\ &= \mathbb{E}_{q(s_t|y_{1:t})}\left[\widetilde{\omega}_t(s_t) h(s_t)\right] \end{split}$$

► By the Bayes theorem:

$$p(s_t|y_{1:t}) = rac{p(y_{1:t}|s_t) p(s_t)}{p(y_{1:t})}$$

Unormalized weights:

$$\widehat{\omega}_{t}(s_{t}) = \frac{p\left(y_{1:t}|s_{t}\right)p\left(s_{t}\right)}{q\left(s_{t}|y_{1:t}\right)} = p\left(y_{1:t}\right)\widetilde{\omega}_{t}(s_{t})$$

Approximated nonlinear filter (II)

Importance sampling (b)

With particles:

$$\hat{\omega}_{t}^{i} = \frac{p\left(y_{1:t}|s_{t}^{i}\right)p\left(s_{t}^{i}\right)}{q\left(s_{t}^{i}|y_{1:t}\right)}$$

Then

$$\widehat{\mathbb{E}}_{\rho(s_t|y_{1:t})}[h(s)] = \sum_{i=1}^{N} \widetilde{\omega}_i h(s_t^i)$$

where

$$\widetilde{\omega}_i = \frac{\widehat{\omega}_i}{\sum_{i=1}^N \widehat{\omega}_i}$$

Approximated nonlinear filter (III)

Sequential importance sampling

Let's pick a proposal q such that:

$$q(s_t|y_{1:t}) = q(s_t|s_{t-1}, y_t) q(s_{t-1}|y_{1:t-1})$$

Then, one can show that:

$$\hat{w}_t(s_t) = \hat{w}_{t-1}(s_{t-1}) rac{p(y_t|s_t) \, p(s_t|s_{t-1})}{q(s_t|s_{t-1}, y_t)}$$

A particle's current weight depends on its previous level and an incremental weight. This increment will put more weight on a particle if she is more likely with respect to its history and the current observation.

Approximated nonlinear filter (III)

Generic particle filter algorithm

1:
$$\{s_0^i, w_0^i\}_{i=1}^N \leftarrow \text{initial sample of particles.}$$

2: for $t \leftarrow 1, T$ do
3: for all $i \leftarrow 1, N$ do
4: $\tilde{s}_t^i \leftarrow q\left(s_t | s_{t-1}^i, y_t\right)$
5: $\hat{w}_t^i \leftarrow w_{t-1}^i \frac{p(y_t | \tilde{s}_t^i) p(\tilde{s}_t^i | s_{t-1}^i)}{q(\tilde{s}_t^i | s_{t-1}^i, y_t)}$
6: end for
7: $\tilde{w}_t^i \leftarrow \frac{\hat{w}_t^i}{\sum_{i=1}^N \hat{w}_t^i}$
8: $\{s_t^i, w_t^i\}_{i=1}^N \leftarrow \{\tilde{s}_t^i, \tilde{w}_t^i\}_{i=1}^N$
9: end for

- Weights degenerate as t goes to infinity...
- ▶ Up to the point where all but one particles have zero weights.
- We don't want to sum-up a distribution with a single point.
- \Rightarrow Resampling (kill particles with low weights and replicate good particles).

Approximated nonlinear filter (IV)

Particle filter algorithm with resampling

1:
$$\{s_0^i, w_0^i\}_{i=1}^N \leftarrow \text{ initial sample of particles.}$$

2: for $t \leftarrow 1, T$ do
3: for all $i \leftarrow 1, N$ do
4: $\tilde{s}_t^i \leftarrow q(s_t|s_{t-1}^i, y_t)$
5: $\hat{w}_t^i \leftarrow w_{t-1}^i \frac{p(y_t|\tilde{s}_t^i|s_{t-1}^i)}{q(\tilde{s}_t^i|s_{t-1}^i, y_t)}$
6: end for
7: $\tilde{w}_t^i \leftarrow \frac{\hat{w}_t^i}{\sum_{i=1}^{N-1} \hat{w}_t^i}$
8: $N_t^\star \leftarrow \left(\sum_{i=1}^N (\tilde{w}_t^i)^2\right)^{-1}$
9: if $N_t^\star < \alpha N$ then
10: $\{s_t^i, w_t^i\}_{i=1}^N \leftarrow \text{Resampling step, with } w_t^i = 1/N$
11: else
12: $\{s_t^i, w_t^i\}_{i=1}^N \leftarrow \{\tilde{s}_t^i, \tilde{w}_t^i\}_{i=1}^N$
13: end if
14: end for

Set the proposal distribution

The blind proposal

$$q\left(s_{t}|s_{t-1},y_{t}\right)=p\left(s_{t}|s_{t-1}\right)$$

Does not use current observation.

Weights recursive expression simplifies into:

$$\widehat{\omega}_{t}\left(s_{t}
ight)\propto\widetilde{\omega}_{t-1}\left(s_{t-1}
ight)p\left(y_{t}|s_{t}
ight)$$

Conditional density of observation is:

$$p(y_t|\tilde{s}_t^{j}) = (2\pi)^{-\frac{n}{2}} |R|^{-\frac{1}{2}} e^{-\frac{1}{2}(y_t - g(\tilde{s}_t^{j};\theta))'R^{-1}(y_t - g(\tilde{s}_t^{j};\theta))}$$

 \Rightarrow Measurement errors are mandatory!

Issues 2 and 3 Likelihood

$$p(y_{1:T}|\boldsymbol{\theta}) = p(y_1|s_0;\boldsymbol{\theta}) p(s_0|\boldsymbol{\theta}) \prod_{t=2}^{T} p(y_t|y_{1:t-1};\boldsymbol{\theta})$$
$$\approx \sum_{i=1}^{N} \widetilde{\omega}_{t-1}^{i} p(y_t|s_t^{i};\boldsymbol{\theta})$$

- 1. How to choose the initial distribution for the states (s_0) ?
- 2. Non differentiability of the likelihhod because of the resampling step.

Estimation with particle filter

Do not use gradient based methods to estimate the mode...

- Simplex "works", but still issues with the hessian at the estimated mode.
- Better to run directly the MCMC.
- ► Slice? SMC...
- Do we really need particle (or nonlinear) filters?