
Estimation of nonlinear models with Dynare

stephane.adjemian@univ-lemans.fr

September, 2023

cz ⋔

https://creativecommons.org/publicdomain/zero/1.0/
https://git.ithaca.fr/stepan/ispra-2023

Introduction

▶ Full information estimation of models approximated at higher order...

▶ Or, in principle, full information estimation of nonlinear models.

▶ Cannot use the (linear) Kalman filter anymore.

▶ Dynare provides routines to evaluate the likelihood of models
approximated at order k ≥ 1.

cz ⋔

https://creativecommons.org/publicdomain/zero/1.0/
https://git.ithaca.fr/stepan/ispra-2023

The reduced form model

st = f (st−1, εt ;θ)

yt = g(st ;θ) + et

▶ f (.) and g(.) are the state and measurement equations.

▶ θ ∈ Θ ⊆ Rm a vector of m parameters.

▶ Cannot use the (linear) Kalman filter anymore.

▶ st and yt are the vectors of state variables and observed variables.

▶ Innovations εt and et are the structural shocks and measurement
errors.

▶ #(yt) = #(et)

cz ⋔

https://creativecommons.org/publicdomain/zero/1.0/
https://git.ithaca.fr/stepan/ispra-2023

Reduced form with second order approximation

▶ The “state” equations:

st = s̄(θ) + gu(θ)ŝt−1 + gu(θ)εt

+ 0.5gσσ(θ)

+ 0.5gyy (θ) (ŝt−1 ⊗ ŝt−1)

+ 0.5guu(θ) (εt ⊗ εt)

+ 0.5guy (θ) (ŝt−1 ⊗ εt)

▶ The measurement equations:

yt = Zst + et

where Z is a selection matrix.

cz ⋔

https://creativecommons.org/publicdomain/zero/1.0/
https://git.ithaca.fr/stepan/ispra-2023

Properties of the state space model

▶ st ∼ first order Markov process:

p (st |s0:t−1) = p(st |st−1)

▶ Observations are conditionally independent:

p (yt |y1:t−1, s0:t) = p (yt |st)

⇒ We cannot evaluate the likelihood, product of p(yt |y1:t−1) densities,
without tracking the state variables.

cz ⋔

https://creativecommons.org/publicdomain/zero/1.0/
https://git.ithaca.fr/stepan/ispra-2023

Nonlinear filter (I)

▶ Suppose p(yt−1|st−1) is known −→ How to compute p(yt |st)?

▶ First we can predict the states in t given information in t − 1:

p (st |y1:t−1) =

∫
p(st |st−1)p (st−1|y1:t−1)dst−1 (1)

where p(st |st−1) is defined by the state equations:

p (st |st−1) =

∫
p (st |st−1, εt) p (εt |st−1)dεt

=

∫
p (st |st−1, εt) p (εt)dεt

cz ⋔

https://creativecommons.org/publicdomain/zero/1.0/
https://git.ithaca.fr/stepan/ispra-2023

Nonlinear filter (II)

▶ p (st |y1:t−1) can be interpreted as our prior belief about the state
variables.

▶ Use Bayes theorem to update our beliefs:

p (st |y1:t) =
p (yt |st) p (st |y1:t−1)

p (yt |y1:t−1)
(2)

where:

p (yt |y1:t−1) =

∫
p (yt |st) p (st |y1:t−1)dst

which is the conditional density required to evaluate the likelihood of
the model.

▶ p (yt |st), likelihood of st , is defined by the measurement equations.

⇒ Iterate over (1) and (2).

cz ⋔

https://creativecommons.org/publicdomain/zero/1.0/
https://git.ithaca.fr/stepan/ispra-2023

Approximated nonlinear filter (I)
Approximate the distribution of st |y1:t

▶ Suppose the distribution of st |y1:t can be accurately approximated

by a set of nodes and weights
{(

s it , ω
i
t

)}N

i=1
, with non negative

weights summing up to one.

⇒ When N →∞
∑N

i=1 ωih(s
i
t) converges to Ep(st |y1:t) [h(s)].

▶ Can be used to approximate the predictive densities:

p̂ (st |y1:t−1) =
N∑
i=1

p(st |s it−1)ω
i
t−1

▶ Particles ← random deviates from st |y1:t .

▶ How to sample from st |y1:t?

cz ⋔

https://creativecommons.org/publicdomain/zero/1.0/
https://git.ithaca.fr/stepan/ispra-2023

Approximated nonlinear filter (II)
Importance sampling (a)

▶ Suppose we can sample from q (st |y1:t) but not from q (st |y1:t).

▶ Then:

Ep(st |y1:t) [h(s)] =

∫
p (st |y1:t)
q (st |y1:t)︸ ︷︷ ︸

w̃t(st)

q (st |y1:t) h(st)dst

= Eq(st |y1:t) [ω̃t(st)h(st)]

▶ By the Bayes theorem:

p (st |y1:t) =
p (y1:t |st) p (st)

p (y1:t)

▶ Unormalized weights:

ω̂t(st) =
p (y1:t |st) p (st)

q (st |y1:t)
= p (y1:t) ω̃t(st)

cz ⋔

https://creativecommons.org/publicdomain/zero/1.0/
https://git.ithaca.fr/stepan/ispra-2023

Approximated nonlinear filter (II)
Importance sampling (b)

With particles:

ω̂i
t =

p
(
y1:t |s it

)
p
(
s it
)

q
(
s it |y1:t

)
Then

Êp(st |y1:t) [h(s)] =
N∑
i=1

ω̃ih(s
i
t)

where

ω̃i =
ω̂i∑N
i=1 ω̂i

cz ⋔

https://creativecommons.org/publicdomain/zero/1.0/
https://git.ithaca.fr/stepan/ispra-2023

Approximated nonlinear filter (III)
Sequential importance sampling

Let’s pick a proposal q such that:

q (st |y1:t) = q (st |st−1, yt) q(st−1|y1:t−1)

Then, one can show that:

ŵt(st) = ŵt−1(st−1)
p (yt |st) p (st |st−1)

q (st |st−1, yt)

A particle’s current weight depends on its previous level and an
incremental weight. This increment will put more weight on a particle if
she is more likely with respect to its history and the current observation.

cz ⋔

https://creativecommons.org/publicdomain/zero/1.0/
https://git.ithaca.fr/stepan/ispra-2023

Approximated nonlinear filter (III)
Generic particle filter algorithm

1:
{
s i0,w

i
0

}N

i=1
← initial sample of particles.

2: for t ← 1,T do
3: for all i ← 1,N do
4: s̃ it ← q

(
st |s it−1, yt

)
5: ŵ i

t ← w i
t−1

p(yt |s̃ it)p(s̃ it |s it−1)
q(s̃ it |s it−1,yt)

6: end for
7: w̃ i

t ←
ŵ i

t∑N
i=1 ŵ

i
t

8:
{
s it ,w

i
t

}N

i=1
←

{
s̃ it , w̃

i
t

}N

i=1
9: end for

cz ⋔

https://creativecommons.org/publicdomain/zero/1.0/
https://git.ithaca.fr/stepan/ispra-2023

Issue 1
Degeneracy

▶ Weights degenerate as t goes to infinity...

▶ Up to the point where all but one particles have zero weights.

▶ We don’t want to sum-up a distribution with a single point.

⇒ Resampling (kill particles with low weights and replicate good
particles).

cz ⋔

https://creativecommons.org/publicdomain/zero/1.0/
https://git.ithaca.fr/stepan/ispra-2023

Approximated nonlinear filter (IV)
Particle filter algorithm with resampling

1:
{
s i0,w

i
0

}N

i=1
← initial sample of particles.

2: for t ← 1,T do
3: for all i ← 1,N do
4: s̃ it ← q

(
st |s it−1, yt

)
5: ŵ i

t ← w i
t−1

p(yt |s̃ it)p(s̃ it |s it−1)
q(s̃ it |s it−1,yt)

6: end for
7: w̃ i

t ←
ŵ i

t∑N
i=1 ŵ

i
t

8: N⋆
t ←

(∑N
i=1

(
w̃ i
t

)2)−1

9: if N⋆
t < αN then

10:
{
s it ,w

i
t

}N

i=1
← Resampling step, with w i

t = 1/N
11: else
12:

{
s it ,w

i
t

}N

i=1
←

{
s̃ it , w̃

i
t

}N

i=1
13: end if
14: end for

cz ⋔

https://creativecommons.org/publicdomain/zero/1.0/
https://git.ithaca.fr/stepan/ispra-2023

Set the proposal distribution
The blind proposal

q (st |st−1, yt) = p (st |st−1)

▶ Does not use current observation.

▶ Weights recursive expression simplifies into:

ω̂t (st) ∝ ω̃t−1 (st−1) p (yt |st)

▶ Conditional density of observation is:

p
(
yt |s̃ it

)
= (2π)−

n
2 |R|− 1

2 e−
1
2 (yt−g(s̃ it ;θ))

′
R−1(yt−g(s̃ it ;θ))

⇒ Measurement errors are mandatory!

cz ⋔

https://creativecommons.org/publicdomain/zero/1.0/
https://git.ithaca.fr/stepan/ispra-2023

Issues 2 and 3
Likelihood

p (y1:T |θ) = p (y1|s0;θ) p (s0|θ)
T∏
t=2

p (yt |y1:t−1;θ)

≈
N∑
i=1

ω̃i
t−1p

(
yt |s it ;θ

)

1. How to choose the initial distribution for the states (s0)?

2. Non differentiability of the likelihhod because of the resampling step.

cz ⋔

https://creativecommons.org/publicdomain/zero/1.0/
https://git.ithaca.fr/stepan/ispra-2023

Estimation with particle filter

▶ Do not use gradient based methods to estimate the mode...

▶ Simplex “works”, but still issues with the hessian at the estimated
mode.

▶ Better to run directly the MCMC.

▶ Slice? SMC...

▶ Do we really need particle (or nonlinear) filters?

cz ⋔

https://creativecommons.org/publicdomain/zero/1.0/
https://git.ithaca.fr/stepan/ispra-2023

